In the Linux kernel, the following vulnerability has been resolved: btrfs: do not assert we found block group item when creating free space tree Currently, when building a free space tree at populate_free_space_tree(), if we are not using the block group tree feature, we always expect to find block group items (either extent items or a block group item with key type BTRFS_BLOCK_GROUP_ITEM_KEY) when we search the extent tree with btrfs_search_slot_for_read(), so we assert that we found an item. However this expectation is wrong since we can have a new block group created in the current transaction which is still empty and for which we still have not added the block group's item to the extent tree, in which case we do not have any items in the extent tree associated to the block group. The insertion of a new block group's block group item in the extent tree happens at btrfs_create_pending_block_groups() when it calls the helper insert_block_group_item(). This typically is done when a transaction handle is released, committed or when running delayed refs (either as part of a transaction commit or when serving tickets for space reservation if we are low on free space). So remove the assertion at populate_free_space_tree() even when the block group tree feature is not enabled and update the comment to mention this case. Syzbot reported this with the following stack trace: BTRFS info (device loop3 state M): rebuilding free space tree assertion failed: ret == 0 :: 0, in fs/btrfs/free-space-tree.c:1115 ------------[ cut here ]------------ kernel BUG at fs/btrfs/free-space-tree.c:1115! Oops: invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 1 UID: 0 PID: 6352 Comm: syz.3.25 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025 RIP: 0010:populate_free_space_tree+0x700/0x710 fs/btrfs/free-space-tree.c:1115 Code: ff ff e8 d3 (...) RSP: 0018:ffffc9000430f780 EFLAGS: 00010246 RAX: 0000000000000043 RBX: ffff88805b709630 RCX: fea61d0e2e79d000 RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000 RBP: ffffc9000430f8b0 R08: ffffc9000430f4a7 R09: 1ffff92000861e94 R10: dffffc0000000000 R11: fffff52000861e95 R12: 0000000000000001 R13: 1ffff92000861f00 R14: dffffc0000000000 R15: 0000000000000000 FS: 00007f424d9fe6c0(0000) GS:ffff888125afc000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fd78ad212c0 CR3: 0000000076d68000 CR4: 00000000003526f0 Call Trace: <TASK> btrfs_rebuild_free_space_tree+0x1ba/0x6d0 fs/btrfs/free-space-tree.c:1364 btrfs_start_pre_rw_mount+0x128f/0x1bf0 fs/btrfs/disk-io.c:3062 btrfs_remount_rw fs/btrfs/super.c:1334 [inline] btrfs_reconfigure+0xaed/0x2160 fs/btrfs/super.c:1559 reconfigure_super+0x227/0x890 fs/super.c:1076 do_remount fs/namespace.c:3279 [inline] path_mount+0xd1a/0xfe0 fs/namespace.c:4027 do_mount fs/namespace.c:4048 [inline] __do_sys_mount fs/namespace.c:4236 [inline] __se_sys_mount+0x313/0x410 fs/namespace.c:4213 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f424e39066a Code: d8 64 89 02 (...) RSP: 002b:00007f424d9fde68 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 00007f424d9fdef0 RCX: 00007f424e39066a RDX: 0000200000000180 RSI: 0000200000000380 RDI: 0000000000000000 RBP: 0000200000000180 R08: 00007f424d9fdef0 R09: 0000000000000020 R10: 0000000000000020 R11: 0000000000000246 R12: 0000200000000380 R13: 00007f424d9fdeb0 R14: 0000000000000000 R15: 00002000000002c0 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved: cifs: parse_dfs_referrals: prevent oob on malformed input Malicious SMB server can send invalid reply to FSCTL_DFS_GET_REFERRALS - reply smaller than sizeof(struct get_dfs_referral_rsp) - reply with number of referrals smaller than NumberOfReferrals in the header Processing of such replies will cause oob. Return -EINVAL error on such replies to prevent oob-s.
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: cs35l41: Fix NULL pointer dereference in cs35l41_get_acpi_mute_state() Return value of a function acpi_evaluate_dsm() is dereferenced without checking for NULL, but it is usually checked for this function. acpi_evaluate_dsm() may return NULL, when acpi_evaluate_object() returns acpi_status other than ACPI_SUCCESS, so add a check to prevent the crach. Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: Fix missing pointer check in hda_component_manager_init function The __component_match_add function may assign the 'matchptr' pointer the value ERR_PTR(-ENOMEM), which will subsequently be dereferenced. The call stack leading to the error looks like this: hda_component_manager_init |-> component_match_add |-> component_match_add_release |-> __component_match_add ( ... ,**matchptr, ... ) |-> *matchptr = ERR_PTR(-ENOMEM); // assign |-> component_master_add_with_match( ... match) |-> component_match_realloc(match, match->num); // dereference Add IS_ERR() check to prevent the crash. Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved: drm/sched: Fix potential double free in drm_sched_job_add_resv_dependencies When adding dependencies with drm_sched_job_add_dependency(), that function consumes the fence reference both on success and failure, so in the latter case the dma_fence_put() on the error path (xarray failed to expand) is a double free. Interestingly this bug appears to have been present ever since commit ebd5f74255b9 ("drm/sched: Add dependency tracking"), since the code back then looked like this: drm_sched_job_add_implicit_dependencies(): ... for (i = 0; i < fence_count; i++) { ret = drm_sched_job_add_dependency(job, fences[i]); if (ret) break; } for (; i < fence_count; i++) dma_fence_put(fences[i]); Which means for the failing 'i' the dma_fence_put was already a double free. Possibly there were no users at that time, or the test cases were insufficient to hit it. The bug was then only noticed and fixed after commit 9c2ba265352a ("drm/scheduler: use new iterator in drm_sched_job_add_implicit_dependencies v2") landed, with its fixup of commit 4eaf02d6076c ("drm/scheduler: fix drm_sched_job_add_implicit_dependencies"). At that point it was a slightly different flavour of a double free, which commit 963d0b356935 ("drm/scheduler: fix drm_sched_job_add_implicit_dependencies harder") noticed and attempted to fix. But it only moved the double free from happening inside the drm_sched_job_add_dependency(), when releasing the reference not yet obtained, to the caller, when releasing the reference already released by the former in the failure case. As such it is not easy to identify the right target for the fixes tag so lets keep it simple and just continue the chain. While fixing we also improve the comment and explain the reason for taking the reference and not dropping it.
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_rndis: Refactor bind path to use __free() After an bind/unbind cycle, the rndis->notify_req is left stale. If a subsequent bind fails, the unified error label attempts to free this stale request, leading to a NULL pointer dereference when accessing ep->ops->free_request. Refactor the error handling in the bind path to use the __free() automatic cleanup mechanism.
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_acm: Refactor bind path to use __free() After an bind/unbind cycle, the acm->notify_req is left stale. If a subsequent bind fails, the unified error label attempts to free this stale request, leading to a NULL pointer dereference when accessing ep->ops->free_request. Refactor the error handling in the bind path to use the __free() automatic cleanup mechanism. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020 Call trace: usb_ep_free_request+0x2c/0xec gs_free_req+0x30/0x44 acm_bind+0x1b8/0x1f4 usb_add_function+0xcc/0x1f0 configfs_composite_bind+0x468/0x588 gadget_bind_driver+0x104/0x270 really_probe+0x190/0x374 __driver_probe_device+0xa0/0x12c driver_probe_device+0x3c/0x218 __device_attach_driver+0x14c/0x188 bus_for_each_drv+0x10c/0x168 __device_attach+0xfc/0x198 device_initial_probe+0x14/0x24 bus_probe_device+0x94/0x11c device_add+0x268/0x48c usb_add_gadget+0x198/0x28c dwc3_gadget_init+0x700/0x858 __dwc3_set_mode+0x3cc/0x664 process_scheduled_works+0x1d8/0x488 worker_thread+0x244/0x334 kthread+0x114/0x1bc ret_from_fork+0x10/0x20
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_ecm: Refactor bind path to use __free() After an bind/unbind cycle, the ecm->notify_req is left stale. If a subsequent bind fails, the unified error label attempts to free this stale request, leading to a NULL pointer dereference when accessing ep->ops->free_request. Refactor the error handling in the bind path to use the __free() automatic cleanup mechanism.
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_ncm: Refactor bind path to use __free() After an bind/unbind cycle, the ncm->notify_req is left stale. If a subsequent bind fails, the unified error label attempts to free this stale request, leading to a NULL pointer dereference when accessing ep->ops->free_request. Refactor the error handling in the bind path to use the __free() automatic cleanup mechanism. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020 Call trace: usb_ep_free_request+0x2c/0xec ncm_bind+0x39c/0x3dc usb_add_function+0xcc/0x1f0 configfs_composite_bind+0x468/0x588 gadget_bind_driver+0x104/0x270 really_probe+0x190/0x374 __driver_probe_device+0xa0/0x12c driver_probe_device+0x3c/0x218 __device_attach_driver+0x14c/0x188 bus_for_each_drv+0x10c/0x168 __device_attach+0xfc/0x198 device_initial_probe+0x14/0x24 bus_probe_device+0x94/0x11c device_add+0x268/0x48c usb_add_gadget+0x198/0x28c dwc3_gadget_init+0x700/0x858 __dwc3_set_mode+0x3cc/0x664 process_scheduled_works+0x1d8/0x488 worker_thread+0x244/0x334 kthread+0x114/0x1bc ret_from_fork+0x10/0x20
In the Linux kernel, the following vulnerability has been resolved: ixgbe: fix too early devlink_free() in ixgbe_remove() Since ixgbe_adapter is embedded in devlink, calling devlink_free() prematurely in the ixgbe_remove() path can lead to UAF. Move devlink_free() to the end. KASAN report: BUG: KASAN: use-after-free in ixgbe_reset_interrupt_capability+0x140/0x180 [ixgbe] Read of size 8 at addr ffff0000adf813e0 by task bash/2095 CPU: 1 UID: 0 PID: 2095 Comm: bash Tainted: G S 6.17.0-rc2-tnguy.net-queue+ #1 PREEMPT(full) [...] Call trace: show_stack+0x30/0x90 (C) dump_stack_lvl+0x9c/0xd0 print_address_description.constprop.0+0x90/0x310 print_report+0x104/0x1f0 kasan_report+0x88/0x180 __asan_report_load8_noabort+0x20/0x30 ixgbe_reset_interrupt_capability+0x140/0x180 [ixgbe] ixgbe_clear_interrupt_scheme+0xf8/0x130 [ixgbe] ixgbe_remove+0x2d0/0x8c0 [ixgbe] pci_device_remove+0xa0/0x220 device_remove+0xb8/0x170 device_release_driver_internal+0x318/0x490 device_driver_detach+0x40/0x68 unbind_store+0xec/0x118 drv_attr_store+0x64/0xb8 sysfs_kf_write+0xcc/0x138 kernfs_fop_write_iter+0x294/0x440 new_sync_write+0x1fc/0x588 vfs_write+0x480/0x6a0 ksys_write+0xf0/0x1e0 __arm64_sys_write+0x70/0xc0 invoke_syscall.constprop.0+0xcc/0x280 el0_svc_common.constprop.0+0xa8/0x248 do_el0_svc+0x44/0x68 el0_svc+0x54/0x160 el0t_64_sync_handler+0xa0/0xe8 el0t_64_sync+0x1b0/0x1b8
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix recursive locking in RPC handle list access Since commit 305853cce3794 ("ksmbd: Fix race condition in RPC handle list access"), ksmbd_session_rpc_method() attempts to lock sess->rpc_lock. This causes hung connections / tasks when a client attempts to open a named pipe. Using Samba's rpcclient tool: $ rpcclient //192.168.1.254 -U user%password $ rpcclient $> srvinfo <connection hung here> Kernel side: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/0:0 state:D stack:0 pid:5021 tgid:5021 ppid:2 flags:0x00200000 Workqueue: ksmbd-io handle_ksmbd_work Call trace: __schedule from schedule+0x3c/0x58 schedule from schedule_preempt_disabled+0xc/0x10 schedule_preempt_disabled from rwsem_down_read_slowpath+0x1b0/0x1d8 rwsem_down_read_slowpath from down_read+0x28/0x30 down_read from ksmbd_session_rpc_method+0x18/0x3c ksmbd_session_rpc_method from ksmbd_rpc_open+0x34/0x68 ksmbd_rpc_open from ksmbd_session_rpc_open+0x194/0x228 ksmbd_session_rpc_open from create_smb2_pipe+0x8c/0x2c8 create_smb2_pipe from smb2_open+0x10c/0x27ac smb2_open from handle_ksmbd_work+0x238/0x3dc handle_ksmbd_work from process_scheduled_works+0x160/0x25c process_scheduled_works from worker_thread+0x16c/0x1e8 worker_thread from kthread+0xa8/0xb8 kthread from ret_from_fork+0x14/0x38 Exception stack(0x8529ffb0 to 0x8529fff8) The task deadlocks because the lock is already held: ksmbd_session_rpc_open down_write(&sess->rpc_lock) ksmbd_rpc_open ksmbd_session_rpc_method down_read(&sess->rpc_lock) <-- deadlock Adjust ksmbd_session_rpc_method() callers to take the lock when necessary.
In the Linux kernel, the following vulnerability has been resolved: cxl/features: Add check for no entries in cxl_feature_info cxl EDAC calls cxl_feature_info() to get the feature information and if the hardware has no Features support, cxlfs may be passed in as NULL. [ 51.957498] BUG: kernel NULL pointer dereference, address: 0000000000000008 [ 51.965571] #PF: supervisor read access in kernel mode [ 51.971559] #PF: error_code(0x0000) - not-present page [ 51.977542] PGD 17e4f6067 P4D 0 [ 51.981384] Oops: Oops: 0000 [#1] SMP NOPTI [ 51.986300] CPU: 49 UID: 0 PID: 3782 Comm: systemd-udevd Not tainted 6.17.0dj test+ #64 PREEMPT(voluntary) [ 51.997355] Hardware name: <removed> [ 52.009790] RIP: 0010:cxl_feature_info+0xa/0x80 [cxl_core] Add a check for cxlfs before dereferencing it and return -EOPNOTSUPP if there is no cxlfs created due to no hardware support.
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds read in hfsplus_strcasecmp() The hfsplus_strcasecmp() logic can trigger the issue: [ 117.317703][ T9855] ================================================================== [ 117.318353][ T9855] BUG: KASAN: slab-out-of-bounds in hfsplus_strcasecmp+0x1bc/0x490 [ 117.318991][ T9855] Read of size 2 at addr ffff88802160f40c by task repro/9855 [ 117.319577][ T9855] [ 117.319773][ T9855] CPU: 0 UID: 0 PID: 9855 Comm: repro Not tainted 6.17.0-rc6 #33 PREEMPT(full) [ 117.319780][ T9855] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 117.319783][ T9855] Call Trace: [ 117.319785][ T9855] <TASK> [ 117.319788][ T9855] dump_stack_lvl+0x1c1/0x2a0 [ 117.319795][ T9855] ? __virt_addr_valid+0x1c8/0x5c0 [ 117.319803][ T9855] ? __pfx_dump_stack_lvl+0x10/0x10 [ 117.319808][ T9855] ? rcu_is_watching+0x15/0xb0 [ 117.319816][ T9855] ? lock_release+0x4b/0x3e0 [ 117.319821][ T9855] ? __kasan_check_byte+0x12/0x40 [ 117.319828][ T9855] ? __virt_addr_valid+0x1c8/0x5c0 [ 117.319835][ T9855] ? __virt_addr_valid+0x4a5/0x5c0 [ 117.319842][ T9855] print_report+0x17e/0x7e0 [ 117.319848][ T9855] ? __virt_addr_valid+0x1c8/0x5c0 [ 117.319855][ T9855] ? __virt_addr_valid+0x4a5/0x5c0 [ 117.319862][ T9855] ? __phys_addr+0xd3/0x180 [ 117.319869][ T9855] ? hfsplus_strcasecmp+0x1bc/0x490 [ 117.319876][ T9855] kasan_report+0x147/0x180 [ 117.319882][ T9855] ? hfsplus_strcasecmp+0x1bc/0x490 [ 117.319891][ T9855] hfsplus_strcasecmp+0x1bc/0x490 [ 117.319900][ T9855] ? __pfx_hfsplus_cat_case_cmp_key+0x10/0x10 [ 117.319906][ T9855] hfs_find_rec_by_key+0xa9/0x1e0 [ 117.319913][ T9855] __hfsplus_brec_find+0x18e/0x470 [ 117.319920][ T9855] ? __pfx_hfsplus_bnode_find+0x10/0x10 [ 117.319926][ T9855] ? __pfx_hfs_find_rec_by_key+0x10/0x10 [ 117.319933][ T9855] ? __pfx___hfsplus_brec_find+0x10/0x10 [ 117.319942][ T9855] hfsplus_brec_find+0x28f/0x510 [ 117.319949][ T9855] ? __pfx_hfs_find_rec_by_key+0x10/0x10 [ 117.319956][ T9855] ? __pfx_hfsplus_brec_find+0x10/0x10 [ 117.319963][ T9855] ? __kmalloc_noprof+0x2a9/0x510 [ 117.319969][ T9855] ? hfsplus_find_init+0x8c/0x1d0 [ 117.319976][ T9855] hfsplus_brec_read+0x2b/0x120 [ 117.319983][ T9855] hfsplus_lookup+0x2aa/0x890 [ 117.319990][ T9855] ? __pfx_hfsplus_lookup+0x10/0x10 [ 117.320003][ T9855] ? d_alloc_parallel+0x2f0/0x15e0 [ 117.320008][ T9855] ? __lock_acquire+0xaec/0xd80 [ 117.320013][ T9855] ? __pfx_d_alloc_parallel+0x10/0x10 [ 117.320019][ T9855] ? __raw_spin_lock_init+0x45/0x100 [ 117.320026][ T9855] ? __init_waitqueue_head+0xa9/0x150 [ 117.320034][ T9855] __lookup_slow+0x297/0x3d0 [ 117.320039][ T9855] ? __pfx___lookup_slow+0x10/0x10 [ 117.320045][ T9855] ? down_read+0x1ad/0x2e0 [ 117.320055][ T9855] lookup_slow+0x53/0x70 [ 117.320065][ T9855] walk_component+0x2f0/0x430 [ 117.320073][ T9855] path_lookupat+0x169/0x440 [ 117.320081][ T9855] filename_lookup+0x212/0x590 [ 117.320089][ T9855] ? __pfx_filename_lookup+0x10/0x10 [ 117.320098][ T9855] ? strncpy_from_user+0x150/0x290 [ 117.320105][ T9855] ? getname_flags+0x1e5/0x540 [ 117.320112][ T9855] user_path_at+0x3a/0x60 [ 117.320117][ T9855] __x64_sys_umount+0xee/0x160 [ 117.320123][ T9855] ? __pfx___x64_sys_umount+0x10/0x10 [ 117.320129][ T9855] ? do_syscall_64+0xb7/0x3a0 [ 117.320135][ T9855] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 117.320141][ T9855] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 117.320145][ T9855] do_syscall_64+0xf3/0x3a0 [ 117.320150][ T9855] ? exc_page_fault+0x9f/0xf0 [ 117.320154][ T9855] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 117.320158][ T9855] RIP: 0033:0x7f7dd7908b07 [ 117.320163][ T9855] Code: 23 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 31 f6 e9 09 00 00 00 66 0f 1f 84 00 00 08 [ 117.320167][ T9855] RSP: 002b:00007ffd5ebd9698 EFLAGS: 00000202 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: NFSD: Define a proc_layoutcommit for the FlexFiles layout type Avoid a crash if a pNFS client should happen to send a LAYOUTCOMMIT operation on a FlexFiles layout.
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Don't allow evicting of BOs in same VM in array of VM binds An array of VM binds can potentially evict other buffer objects (BOs) within the same VM under certain conditions, which may lead to NULL pointer dereferences later in the bind pipeline. To prevent this, clear the allow_res_evict flag in the xe_bo_validate call. v2: - Invert polarity of no_res_evict (Thomas) - Add comment in code explaining issue (Thomas) (cherry picked from commit 8b9ba8d6d95fe75fed6b0480bb03da4b321bea08)
NeuVector used a hard-coded cryptographic key embedded in the source code. At compilation time, the key value was replaced with the secret key value and used to encrypt sensitive configurations when NeuVector stores the data.
An example dag `example_dag_decorator` had non-validated parameter that allowed the UI user to redirect the example to a malicious server and execute code on worker. This however required that the example dags are enabled in production (not default) or the example dag code copied to build your own similar dag. If you used the `example_dag_decorator` please review it and apply the changes implemented in Airflow 3.0.5 accordingly.
A vulnerability was identified in NeuVector, where the enforcer used environment variables CLUSTER_RPC_PORT and CLUSTER_LAN_PORT to generate a command to be executed via popen, without first sanitising their values. The entry process of the enforcer container is the monitor process. When the enforcer container stops, the monitor process checks whether the consul subprocess has exited. To perform this check, the monitor process uses the popen function to execute a shell command that determines whether the ports used by the consul subprocess are still active. The values of environment variables CLUSTER_RPC_PORT and CLUSTER_LAN_PORT are used directly to compose shell commands via popen without validation or sanitization. This behavior could allow a malicious user to inject malicious commands through these variables within the enforcer container.
This vulnerability affects NeuVector deployments only when the Report anonymous cluster data option is enabled. When this option is enabled, NeuVector sends anonymous telemetry data to the telemetry server. In affected versions, NeuVector does not enforce TLS certificate verification when transmitting anonymous cluster data to the telemetry server. As a result, the communication channel is susceptible to man-in-the-middle (MITM) attacks, where an attacker could intercept or modify the transmitted data. Additionally, NeuVector loads the response of the telemetry server is loaded into memory without size limitation, which makes it vulnerable to a Denial of Service(DoS) attack
API users via `/api/v2/dagReports` could perform Dag code execution in the context of the api-server if the api-server was deployed in the environment where Dag files were available.
User with CREATE and no UPDATE privilege for Pools, Connections, Variables could update existing records via bulk create API with overwrite action.
A vulnerability exists in Progress Flowmon versions prior 12.5.6 where certain system configuration files have incorrect file permissions, allowing a user with access to the default flowmon system user account used for SSH access to potentially escalate privileges to root during service initialization.
The AppPresser – Mobile App Framework plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the 'myappp_verify' function in all versions up to, and including, 4.5.0. This makes it possible for unauthenticated attackers to extract sensitive data including plugin and theme names and version numbers, which can be used to facilitate targeted attacks against outdated or vulnerable components.
The NS Maintenance Mode for WP WordPress plugin through 1.3.1 does not sanitise and escape some of its settings, which could allow high privilege users such as admin to perform Stored Cross-Site Scripting attacks even when the unfiltered_html capability is disallowed (for example in multisite setup).
A flaw was found in the X.Org X server and Xwayland when processing X11 Present extension notifications. Improper error handling during notification creation can leave dangling pointers that lead to a use-after-free condition. This can cause memory corruption or a crash, potentially allowing an attacker to execute arbitrary code or cause a denial of service.
The Translate WordPress and go Multilingual – Weglot plugin for WordPress is vulnerable to unauthorized loss of data due to a missing capability check on the 'clean_options' function in all versions up to, and including, 5.1. This makes it possible for unauthenticated attackers to delete limited transients that contain cached plugin options.
The Site Checkup Debug AI Troubleshooting with Wizard and Tips for Each Issue plugin for WordPress is vulnerable to log file poisoning in all versions up to, and including, 1.47. This makes it possible for unauthenticated attackers to insert arbitrary content into log files, and potentially cause denial of service via disk space exhaustion.
A flaw was discovered in the X.Org X server’s X Keyboard (Xkb) extension when handling client resource cleanup. The software frees certain data structures without properly detaching related resources, leading to a use-after-free condition. This can cause memory corruption or a crash when affected clients disconnect.
A flaw was identified in the X.Org X server’s X Keyboard (Xkb) extension where improper bounds checking in the XkbSetCompatMap() function can cause an unsigned short overflow. If an attacker sends specially crafted input data, the value calculation may overflow, leading to memory corruption or a crash.
The Blocksy Companion plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'blocksy_newsletter_subscribe' shortcode in all versions up to, and including, 2.1.14 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
Each Italy Wireless Mini Router WIRELESS-N 300M v28K.MiniRouter.20190211 was discovered to store the Administrator password.
A buffer overflow in the UPnP service of Tenda AC8 Hardware v03.03.10.01 allows attackers to cause a Denial of Service (DoS) via supplying a crafted packet.
sqls-server/sqls 0.2.28 is vulnerable to command injection in the config command because the openEditor function passes the EDITOR environment variable and config file path to sh -c without sanitization, allowing attackers to execute arbitrary commands.
Incorrect access control in the Web management interface in Each Italy Wireless Mini Router WIRELESS-N 300M v28K.MiniRouter.20190211 allows attackers to arbitrarily change the administrator username and password via sending a crafted GET request.
A path traversal vulnerability was identified in SourceCodester Pet Grooming Management System 1.0, affecting the admin/manage_website.php component. An authenticated user with administrative privileges can leverage this flaw by submitting a specially crafted POST request, enabling the deletion of arbitrary files on the web server or underlying operating system.
Kitware VTK (Visualization Toolkit) 9.5.0 is vulnerable to Heap Use-After-Free in vtkGLTFImporter::ImportActors. When processing GLTF files with invalid scene node references, the application accesses string members of mesh objects that have been previously freed during actor import operations.
Cross-site scripting (XSS) vulnerability in Zucchetti Ad Hoc Infinity 4.2 and earlier allows remote unauthenticated attackers to inject arbitrary JavaScript via the pHtmlSource parameter of the /ahi/jsp/gsfr_feditorHTML.jsp?pHtmlSource endpoint.
Cross-site scripting (XSS) vulnerability in Zucchetti Ad Hoc Revolution 4.1 and earlier allows remote unauthenticated attackers to inject arbitrary JavaScript via the pHtmlSource parameter of the /ahrw/jsp/gsfr_feditorHTML.jsp endpoint.
A Reflected Cross-Site Scripting (XSS) vulnerability was discovered in the /publix/run endpoint of JATOS 3.7.1 through 3.9.6 (inclusive). This allows remote attackers to execute arbitrary JavaScript in a user's web browser by including a malicious payload in the "code" URL parameter. When an authenticated admin user accesses the study's URL, the malicious script gets interpreted and executes within their browser, which can lead to unauthorized actions, account compromise, and privilege escalation.
A stored cross-site scripting (XSS) vulnerability in AIxBlock commit 04f305 allows attackers to execute arbitrary web scripts or HTML via injecting a crafted payload into the model_desc field.
An issue in BusinessNext CRMnext v.10.8.3.0 allows a remote attacker to execute arbitrary code via the comments input parameter.
Mobile Scanner Android App version 2.12.38 (package name com.glority.everlens), developed by Glority Global Group Ltd., contains a credential leakage vulnerability. Improper handling of cloud service credentials may allow attackers to obtain them and carry out unauthorized actions, such as sensitive information disclosure and abuse of cloud resources. Successful exploitation could result in privacy breaches and misuse of the platform infrastructure.
AG Life Logger Android App version v1.0.2.72 and before (package name com.donki.healthy), developed by IO FIT, K.K., contains improper access control vulnerabilities. Exposed credentials in traffic may allow attackers to misuse cloud resources, and predictable verification codes make brute-force account logins feasible. Successful exploitation could result in account compromise, privacy breaches, and abuse of cloud resources.
Kanova Android App version 1.0.27 (package name com.karelane), developed by Karely L.L.C., contains improper access control vulnerabilities. Attackers may gain unauthorized access to user details and obtain group information, including entry codes, by manipulating API request parameters. Successful exploitation could result in privacy breaches, unauthorized group access, and misuse of the platform.
2nd Line Android App version v1.2.92 and before (package name com.mysecondline.app), developed by AutoBizLine, Inc., contains an improper access control vulnerability in its authentication mechanism. The server only validates the first character of the user_token, enabling attackers to brute force tokens and perform unauthorized queries on other user accounts. Successful exploitation could result in privacy breaches and unauthorized access to user data.
An arbitrary file upload vulnerability in the Data Preparation function of AIxBlock commit f60975 allows attackers to execute arbitrary code via a crafted SVG file.
PerfreeBlog v4.0.11 is vulnerable to Server-Side Request Forgery due to a missing authorization check in the uploadAttachByUrl API endpoint (AttachController.java).
mCarFix Motorists App version 2.3 (package name com.skytop.mcarfix), developed by Paniel Mwaura, contains improper access control vulnerabilities. Attackers may bypass verification to arbitrarily register accounts, and by tampering with sequential numeric IDs, gain unauthorized access to user data and groups. Successful exploitation could result in fake account creation, privacy breaches, and misuse of the platform.
Senza: Keto & Fasting Android App version 2.10.15 (package name com.gl.senza), developed by Paul Itoi, contains an improper access control vulnerability. By exploiting insufficient checks in user data API endpoints, attackers can obtain authentication tokens and perform account takeover. Successful exploitation could result in unauthorized account access, privacy breaches, and misuse of the platform.
AdForest - Classified Android App version 4.0.12 (package name scriptsbundle.adforest), developed by Muhammad Jawad Arshad, contains an improper access control vulnerability in its authentication mechanism. The app uses a Base64-encoded email address as the authorization credential, which can be manipulated by attackers to gain unauthorized access to user accounts. Successful exploitation could result in account compromise, privacy breaches, and misuse of the platform.
ABC Fine Wine & Spirits Android App version v.11.27.5 and before (package name com.cta.abcfinewineandspirits), developed by ABC Liquors, Inc., contains an improper access control vulnerability in its login mechanism. The application does not properly validate user passwords during authentication, allowing attackers to bypass login checks and obtain valid session identifiers. Successful exploitation could result in unauthorized account access, privacy breaches, and misuse of the platform.