Alist is a file list program that supports multiple storages, powered by Gin and Solidjs. Prior to version 3.57.0, the application contains path traversal vulnerability in multiple file operation handlers. An authenticated attacker can bypass directory-level authorisation by injecting traversal sequences into filename components, enabling unauthorised file removal, movement and copying across user boundaries within the same storage mount. This issue has been patched in version 3.57.0.
Alist is a file list program that supports multiple storages, powered by Gin and Solidjs. Prior to version 3.57.0, the application disables TLS certificate verification by default for all outgoing storage driver communications, making the system vulnerable to Man-in-the-Middle (MitM) attacks. This enables the complete decryption, theft, and manipulation of all data transmitted during storage operations, severely compromising the confidentiality and integrity of user data. This issue has been patched in version 3.57.0.
Compressing is a compressing and uncompressing lib for node. In version 2.0.0 and 1.10.3 and prior, Compressing extracts TAR archives while restoring symbolic links without validating their targets. By embedding symlinks that resolve outside the intended extraction directory, an attacker can cause subsequent file entries to be written to arbitrary locations on the host file system. Depending on the extractor’s handling of existing files, this behavior may allow overwriting sensitive files or creating new files in security-critical locations. This issue has been patched in versions 1.10.4 and 2.0.1.
melange allows users to build apk packages using declarative pipelines. From version 0.14.0 to before 0.40.3, an attacker who can influence a melange configuration file (e.g., through pull request-driven CI or build-as-a-service scenarios) could read arbitrary files from the host system. The LicensingInfos function in pkg/config/config.go reads license files specified in copyright[].license-path without validating that paths remain within the workspace directory, allowing path traversal via ../ sequences. The contents of the traversed file are embedded into the generated SBOM as license text, enabling exfiltration of sensitive data through build artifacts. This issue has been patched in version 0.40.3.
melange allows users to build apk packages using declarative pipelines. From version 0.10.0 to before 0.40.3, an attacker who can influence inputs to the patch pipeline could execute arbitrary shell commands on the build host. The patch pipeline in pkg/build/pipelines/patch.yaml embeds input-derived values (series paths, patch filenames, and numeric parameters) into shell scripts without proper quoting or validation, allowing shell metacharacters to break out of their intended context. The vulnerability affects the built-in patch pipeline which can be invoked through melange build and melange license-check operations. An attacker who can control patch-related inputs (e.g., through pull request-driven CI, build-as-a-service, or by influencing melange configurations) can inject shell metacharacters such as backticks, command substitutions $(…), semicolons, pipes, or redirections to execute arbitrary commands with the privileges of the melange build process. This issue has been patched in version 0.40.3.
melange allows users to build apk packages using declarative pipelines. From version 0.3.0 to before 0.40.3, an attacker who can provide build input values, but not modify pipeline definitions, could execute arbitrary shell commands if the pipeline uses ${{vars.*}} or ${{inputs.*}} substitutions in working-directory. The field is embedded into shell scripts without proper quote escaping. This issue has been patched in version 0.40.3.
melange allows users to build apk packages using declarative pipelines. In version 0.11.3 to before 0.40.3, an attacker who can influence the tar stream from a QEMU guest VM could write files outside the intended workspace directory on the host. The retrieveWorkspace function extracts tar entries without validating that paths stay within the workspace, allowing path traversal via ../ sequences. This issue has been patched in version 0.40.3.
NanoMQ MQTT Broker (NanoMQ) is an all-around Edge Messaging Platform. In version 0.24.6, NanoMQ has a protocol parsing / forwarding inconsistency when handling shared subscriptions ($share/). A malformed SUBSCRIBE topic such as $share/ab (missing the second /) is not strictly validated during the subscription stage, so the invalid Topic Filter is stored into the subscription table. Later, when any PUBLISH matches this subscription, the broker send path (nmq_pipe_send_start_v4/v5) performs a second $share/ parsing using strchr() and increments the returned pointer without NULL checks. If the second strchr() returns NULL, sub_topic++ turns the pointer into an invalid address (e.g. 0x1). This invalid pointer is then passed into topic_filtern(), which triggers strlen() and crashes with SIGSEGV. The crash is stable and remotely triggerable. This issue has been patched in version 0.24.7.
Apollo Server is an open-source, spec-compliant GraphQL server that's compatible with any GraphQL client, including Apollo Client. In versions from 2.0.0 to 3.13.0, 4.2.0 to before 4.13.0, and 5.0.0 to before 5.4.0, the default configuration of startStandaloneServer from @apollo/server/standalone is vulnerable to denial of service (DoS) attacks through specially crafted request bodies with exotic character set encodings. This issue does not affect users that use @apollo/server as a dependency for integration packages, like @as-integrations/express5 or @as-integrations/next, only direct usage of startStandaloneServer.
apko allows users to build and publish OCI container images built from apk packages. From version 0.14.8 to before 1.1.1, an attacker who controls or compromises an APK repository used by apko could cause resource exhaustion on the build host. The ExpandApk function in pkg/apk/expandapk/expandapk.go expands .apk streams without enforcing decompression limits, allowing a malicious repository to serve a small, highly-compressed .apk that inflates into a large tar stream, consuming excessive disk space and CPU time, causing build failures or denial of service. This issue has been patched in version 1.1.1.
apko allows users to build and publish OCI container images built from apk packages. From version 0.14.8 to before 1.1.1, a path traversal vulnerability was discovered in apko's dirFS filesystem abstraction. An attacker who can supply a malicious APK package (e.g., via a compromised or typosquatted repository) could create directories or symlinks outside the intended installation root. The MkdirAll, Mkdir, and Symlink methods in pkg/apk/fs/rwosfs.go use filepath.Join() without validating that the resulting path stays within the base directory. This issue has been patched in version 1.1.1.
apko allows users to build and publish OCI container images built from apk packages. From version 0.14.8 to before 1.1.0, expandapk.Split drains the first gzip stream of an APK archive via io.Copy(io.Discard, gzi) without explicit bounds. With an attacker-controlled input stream, this can force large gzip inflation work and lead to resource exhaustion (availability impact). The Split function reads the first tar header, then drains the remainder of the gzip stream by reading from the gzip reader directly without any maximum uncompressed byte limit or inflate-ratio cap. A caller that parses attacker-controlled APK streams may be forced to spend excessive CPU time inflating gzip data, leading to timeouts or process slowdown. This issue has been patched in version 1.1.0.
A maliciously crafted GIF file, when parsed through Autodesk 3ds Max, can cause a Stack-Based Buffer Overflow vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process.
ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In versions 5.5.2, 5.4.3, 5.3.4, 5.2.6, and 5.1.6, an out-of-bounds read vulnerability was reported in the BLE ATT Prepare Write handling of the BLE provisioning transport (protocomm_ble). The issue can be triggered by a remote BLE client while the device is in provisioning mode. The transport accumulated prepared-write fragments in a fixed-size buffer but incorrectly tracked the cumulative length. By sending repeated prepare write requests with overlapping offsets, a remote client could cause the reported length to exceed the allocated buffer size. This inflated length was then passed to provisioning handlers during execute-write processing, resulting in an out-of-bounds read and potential memory corruption. This issue has been patched in versions 5.5.3, 5.4.4, 5.3.5, 5.2.7, and 5.1.7.
ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In versions 5.5.2, 5.4.3, 5.3.4, 5.2.6, and 5.1.6, a use-after-free vulnerability was reported in the BLE provisioning transport (protocomm_ble) layer. The issue can be triggered by a remote BLE client while the device is in provisioning mode. The vulnerability occurred when provisioning was stopped with keep_ble_on = true. In this configuration, internal protocomm_ble state and GATT metadata were freed while the BLE stack and GATT services remained active. Subsequent BLE read or write callbacks dereferenced freed memory, allowing a connected or newly connected client to trigger invalid memory acces. This issue has been patched in versions 5.5.3, 5.4.4, 5.3.5, 5.2.7, and 5.1.7.
ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In versions 5.5.2, 5.4.3, 5.3.4, 5.2.6, and 5.1.6, a vulnerability exists in the WPS (Wi-Fi Protected Setup) Enrollee implementation where malformed EAP-WSC packets with truncated payloads can cause integer underflow during fragment length calculation. When processing EAP-Expanded (WSC) messages, the code computes frag_len by subtracting header sizes from the total packet length. If an attacker sends a packet where the EAP Length field covers only the header and flags but omits the expected payload (such as the 2-byte Message Length field when WPS_MSG_FLAG_LEN is set), frag_len becomes negative. This negative value is then implicitly cast to size_t when passed to wpabuf_put_data(), resulting in a very large unsigned value. This issue has been patched in versions 5.5.3, 5.4.4, 5.3.5, 5.2.7, and 5.1.7.
RIOT is an open-source microcontroller operating system, designed to match the requirements of Internet of Things (IoT) devices and other embedded devices. In version 2025.10 and prior, multiple out-of-bounds read allow any unauthenticated user, with ability to send or manipulate input packets, to read adjacent memory locations, or crash a vulnerable device running the 6LoWPAN stack. The received packet is cast into a sixlowpan_sfr_rfrag_t struct and dereferenced without validating the packet is large enough to contain the struct object. At time of publication, no known patch exists.
OpenSTAManager is an open source management software for technical assistance and invoicing. In version 2.9.8 and prior, there is a SQL Injection vulnerability in the Stampe Module. At time of publication, no known patch exists.
OpenSTAManager is an open source management software for technical assistance and invoicing. In version 2.9.8 and prior, a SQL Injection vulnerability exists in the ajax_complete.php endpoint when handling the get_sedi operation. An authenticated attacker can inject malicious SQL code through the idanagrafica parameter, leading to unauthorized database access. At time of publication, no known patch exists.
n8n is an open source workflow automation platform. From version 0.187.0 to before 1.120.3, a command injection vulnerability was identified in n8n’s community package installation functionality. The issue allowed authenticated users with administrative permissions to execute arbitrary system commands on the n8n host under specific conditions. This issue has been patched in version 1.120.3.
The unstructured library provides open-source components for ingesting and pre-processing images and text documents, such as PDFs, HTML, Word docs, and many more. Prior to version 0.18.18, a path traversal vulnerability in the partition_msg function allows an attacker to write or overwrite arbitrary files on the filesystem when processing malicious MSG files with attachments. This issue has been patched in version 0.18.18.
GLPI is a free asset and IT management software package. From version 0.85 to before 10.0.23, an authenticated user can perform a SQL injection. This issue has been patched in version 10.0.23.
GLPI is a free asset and IT management software package. In versions starting from 0.71 to before 10.0.23 and before 11.0.5, when remote authentication is used, based on SSO variables, a user can steal a GLPI session previously opened by another user on the same machine. This issue has been patched in versions .
GLPI is a free asset and IT management software package. From version 11.0.0 to before 11.0.5, a GLPI administrator can perform SSRF request through the Webhook feature. This issue has been patched in version 11.0.5.
n8n is an open source workflow automation platform. Prior to version 2.4.8, a vulnerability in the Python Code node allows authenticated users to break out of the Python sandbox environment and execute code outside the intended security boundary. This issue has been patched in version 2.4.8.
n8n is an open source workflow automation platform. Prior to versions 1.118.0 and 2.4.0, a vulnerability in the Merge node's SQL Query mode allowed authenticated users with permission to create or modify workflows to write arbitrary files to the n8n server's filesystem potentially leading to remote code execution. This issue has been patched in versions 1.118.0 and 2.4.0.
n8n is an open source workflow automation platform. Prior to versions 1.123.12 and 2.4.0, when workflows process uploaded files and transfer them to remote servers via the SSH node without validating their metadata the vulnerability can lead to files being written to unintended locations on those remote systems potentially leading to remote code execution on those systems. As a prerequisites an unauthenticated attacker needs knowledge of such workflows existing and the endpoints for file uploads need to be unauthenticated. This issue has been patched in versions 1.123.12 and 2.4.0.
n8n is an open source workflow automation platform. Prior to versions 1.123.9 and 2.2.1, a Cross-Site Scripting (XSS) vulnerability existed in a markdown rendering component used in n8n's interface, including workflow sticky notes and other areas that support markdown content. An authenticated user with permission to create or modify workflows could abuse this to execute scripts with same-origin privileges when other users interact with a maliciously crafted workflow. This could lead to session hijacking and account takeover. This issue has been patched in versions 1.123.9 and 2.2.1.
n8n is an open source workflow automation platform. Prior to versions 1.123.10 and 2.5.0, vulnerabilities in the Git node allowed authenticated users with permission to create or modify workflows to execute arbitrary system commands or read arbitrary files on the n8n host. This issue has been patched in versions 1.123.10 and 2.5.0.
n8n is an open source workflow automation platform. Prior to versions 1.123.18 and 2.5.0, a vulnerability in the file access controls allows authenticated users with permission to create or modify workflows to read sensitive files from the n8n host system. This can be exploited to obtain critical configuration data and user credentials, leading to complete account takeover of any user on the instance. This issue has been patched in versions 1.123.18 and 2.5.0.
n8n is an open source workflow automation platform. Prior to version 1.123.2, a Cross-Site Scripting (XSS) vulnerability has been identified in the handling of webhook responses and related HTTP endpoints. Under certain conditions, the Content Security Policy (CSP) sandbox protection intended to isolate HTML responses may not be applied correctly. An authenticated user with permission to create or modify workflows could abuse this to execute malicious scripts with same-origin privileges when other users interact with the crafted workflow. This could lead to session hijacking and account takeover. This issue has been patched in version 1.123.2.
n8n is an open source workflow automation platform. From version 1.65.0 to before 1.114.3, the use of Buffer.allocUnsafe() and Buffer.allocUnsafeSlow() in the task runner allowed untrusted code to allocate uninitialized memory. Such uninitialized buffers could contain residual data from within the same Node.js process (for example, data from prior requests, tasks, secrets, or tokens), resulting in potential information disclosure. This issue has been patched in version 1.114.3.
n8n is an open source workflow automation platform. Prior to versions 1.123.17 and 2.5.2, an authenticated user with permission to create or modify workflows could abuse crafted expressions in workflow parameters to trigger unintended system command execution on the host running n8n. This issue has been patched in versions 1.123.17 and 2.5.2.
A maliciously crafted project directory, when opening a max file in Autodesk 3ds Max, could lead to execution of arbitrary code in the context of the current process due to an Untrusted Search Path being utilized.
A maliciously crafted GIF file, when parsed through Autodesk 3ds Max, can cause a Stack-Based Buffer Overflow vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process.
A maliciously crafted RGB file, when parsed through Autodesk 3ds Max, can force a Memory Corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process.
A maliciously crafted RGB file, when parsed through Autodesk 3ds Max, can force a Memory Corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process.
A maliciously crafted GIF file, when parsed through Autodesk 3ds Max, can force an Out-of-Bounds Write vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process.
A vulnerability in the text rendering subsystem of Cisco TelePresence Collaboration Endpoint (CE) Software and Cisco RoomOS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient validation of input received by an affected device. An attacker could exploit this vulnerability by getting the affected device to render crafted text, for example, a crafted meeting invitation. As indicated in the CVSS score, no user interaction is required, such as accepting the meeting invitation. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition.
A vulnerability in the web-based management interface of Cisco Prime Infrastructure could allow an authenticated, remote attacker to conduct a stored cross-site scripting (XSS) attack against users of the interface of an affected system. This vulnerability exists because the web-based management interface does not properly validate user-supplied input. An attacker could exploit this vulnerability by inserting malicious code into specific data fields in the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information. To exploit this vulnerability, an attacker must have valid administrative credentials.
A vulnerability in the web-based management interface of Cisco Evolved Programmable Network Manager (EPNM) and Cisco Prime Infrastructure could allow an unauthenticated, remote attacker to redirect a user to a malicious web page. This vulnerability is due to improper input validation of the parameters in the HTTP request. An attacker could exploit this vulnerability by intercepting and modifying an HTTP request from a user. A successful exploit could allow the attacker to redirect the user to a malicious web page.
A vulnerability in the Certificate Management feature of Cisco Meeting Management could allow an authenticated, remote attacker to upload arbitrary files, execute arbitrary commands, and elevate privileges to root on an affected system. This vulnerability is due to improper input validation in certain sections of the web-based management interface. An attacker could exploit this vulnerability by sending a crafted HTTP request to an affected system. A successful exploit could allow the attacker to upload arbitrary files to the affected system. The malicious files could overwrite system files that are processed by the root system account and allow arbitrary command execution with root privileges. To exploit this vulnerability, the attacker must have valid credentials for a user account with at least the role of video operator.
A vulnerability in the Dynamic Vectoring and Streaming (DVS) Engine implementation of Cisco AsyncOS Software for Cisco Secure Web Appliance could allow an unauthenticated, remote attacker to bypass the anti-malware scanner, allowing malicious archive files to be downloaded. This vulnerability is due to improper handling of certain archive files. An attacker could exploit this vulnerability by sending a crafted archive file, which should be blocked, through an affected device. A successful exploit could allow the attacker to bypass the anti-malware scanner and download malware onto an end user workstation. The downloaded malware will not automatically execute unless the end user extracts and launches the malicious file.
In the Linux kernel, the following vulnerability has been resolved: scsi: core: Wake up the error handler when final completions race against each other The fragile ordering between marking commands completed or failed so that the error handler only wakes when the last running command completes or times out has race conditions. These race conditions can cause the SCSI layer to fail to wake the error handler, leaving I/O through the SCSI host stuck as the error state cannot advance. First, there is an memory ordering issue within scsi_dec_host_busy(). The write which clears SCMD_STATE_INFLIGHT may be reordered with reads counting in scsi_host_busy(). While the local CPU will see its own write, reordering can allow other CPUs in scsi_dec_host_busy() or scsi_eh_inc_host_failed() to see a raised busy count, causing no CPU to see a host busy equal to the host_failed count. This race condition can be prevented with a memory barrier on the error path to force the write to be visible before counting host busy commands. Second, there is a general ordering issue with scsi_eh_inc_host_failed(). By counting busy commands before incrementing host_failed, it can race with a final command in scsi_dec_host_busy(), such that scsi_dec_host_busy() does not see host_failed incremented but scsi_eh_inc_host_failed() counts busy commands before SCMD_STATE_INFLIGHT is cleared by scsi_dec_host_busy(), resulting in neither waking the error handler task. This needs the call to scsi_host_busy() to be moved after host_failed is incremented to close the race condition.
In the Linux kernel, the following vulnerability has been resolved: fs/writeback: skip AS_NO_DATA_INTEGRITY mappings in wait_sb_inodes() Above the while() loop in wait_sb_inodes(), we document that we must wait for all pages under writeback for data integrity. Consequently, if a mapping, like fuse, traditionally does not have data integrity semantics, there is no need to wait at all; we can simply skip these inodes. This restores fuse back to prior behavior where syncs are no-ops. This fixes a user regression where if a system is running a faulty fuse server that does not reply to issued write requests, this causes wait_sb_inodes() to wait forever.
In the Linux kernel, the following vulnerability has been resolved: can: usb_8dev: usb_8dev_read_bulk_callback(): fix URB memory leak Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak"). In usb_8dev_open() -> usb_8dev_start(), the URBs for USB-in transfers are allocated, added to the priv->rx_submitted anchor and submitted. In the complete callback usb_8dev_read_bulk_callback(), the URBs are processed and resubmitted. In usb_8dev_close() -> unlink_all_urbs() the URBs are freed by calling usb_kill_anchored_urbs(&priv->rx_submitted). However, this does not take into account that the USB framework unanchors the URB before the complete function is called. This means that once an in-URB has been completed, it is no longer anchored and is ultimately not released in usb_kill_anchored_urbs(). Fix the memory leak by anchoring the URB in the usb_8dev_read_bulk_callback() to the priv->rx_submitted anchor.
In the Linux kernel, the following vulnerability has been resolved: arm64/fpsimd: signal: Allocate SSVE storage when restoring ZA The code to restore a ZA context doesn't attempt to allocate the task's sve_state before setting TIF_SME. Consequently, restoring a ZA context can place a task into an invalid state where TIF_SME is set but the task's sve_state is NULL. In legitimate but uncommon cases where the ZA signal context was NOT created by the kernel in the context of the same task (e.g. if the task is saved/restored with something like CRIU), we have no guarantee that sve_state had been allocated previously. In these cases, userspace can enter streaming mode without trapping while sve_state is NULL, causing a later NULL pointer dereference when the kernel attempts to store the register state: | # ./sigreturn-za | Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 | Mem abort info: | ESR = 0x0000000096000046 | EC = 0x25: DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | FSC = 0x06: level 2 translation fault | Data abort info: | ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000 | CM = 0, WnR = 1, TnD = 0, TagAccess = 0 | GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 | user pgtable: 4k pages, 52-bit VAs, pgdp=0000000101f47c00 | [0000000000000000] pgd=08000001021d8403, p4d=0800000102274403, pud=0800000102275403, pmd=0000000000000000 | Internal error: Oops: 0000000096000046 [#1] SMP | Modules linked in: | CPU: 0 UID: 0 PID: 153 Comm: sigreturn-za Not tainted 6.19.0-rc1 #1 PREEMPT | Hardware name: linux,dummy-virt (DT) | pstate: 214000c9 (nzCv daIF +PAN -UAO -TCO +DIT -SSBS BTYPE=--) | pc : sve_save_state+0x4/0xf0 | lr : fpsimd_save_user_state+0xb0/0x1c0 | sp : ffff80008070bcc0 | x29: ffff80008070bcc0 x28: fff00000c1ca4c40 x27: 63cfa172fb5cf658 | x26: fff00000c1ca5228 x25: 0000000000000000 x24: 0000000000000000 | x23: 0000000000000000 x22: fff00000c1ca4c40 x21: fff00000c1ca4c40 | x20: 0000000000000020 x19: fff00000ff6900f0 x18: 0000000000000000 | x17: fff05e8e0311f000 x16: 0000000000000000 x15: 028fca8f3bdaf21c | x14: 0000000000000212 x13: fff00000c0209f10 x12: 0000000000000020 | x11: 0000000000200b20 x10: 0000000000000000 x9 : fff00000ff69dcc0 | x8 : 00000000000003f2 x7 : 0000000000000001 x6 : fff00000c1ca5b48 | x5 : fff05e8e0311f000 x4 : 0000000008000000 x3 : 0000000000000000 | x2 : 0000000000000001 x1 : fff00000c1ca5970 x0 : 0000000000000440 | Call trace: | sve_save_state+0x4/0xf0 (P) | fpsimd_thread_switch+0x48/0x198 | __switch_to+0x20/0x1c0 | __schedule+0x36c/0xce0 | schedule+0x34/0x11c | exit_to_user_mode_loop+0x124/0x188 | el0_interrupt+0xc8/0xd8 | __el0_irq_handler_common+0x18/0x24 | el0t_64_irq_handler+0x10/0x1c | el0t_64_irq+0x198/0x19c | Code: 54000040 d51b4408 d65f03c0 d503245f (e5bb5800) | ---[ end trace 0000000000000000 ]--- Fix this by having restore_za_context() ensure that the task's sve_state is allocated, matching what we do when taking an SME trap. Any live SVE/SSVE state (which is restored earlier from a separate signal context) must be preserved, and hence this is not zeroed.
In the Linux kernel, the following vulnerability has been resolved: timekeeping: Adjust the leap state for the correct auxiliary timekeeper When __do_ajdtimex() was introduced to handle adjtimex for any timekeeper, this reference to tk_core was not updated. When called on an auxiliary timekeeper, the core timekeeper would be updated incorrectly. This gets caught by the lock debugging diagnostics because the timekeepers sequence lock gets written to without holding its associated spinlock: WARNING: include/linux/seqlock.h:226 at __do_adjtimex+0x394/0x3b0, CPU#2: test/125 aux_clock_adj (kernel/time/timekeeping.c:2979) __do_sys_clock_adjtime (kernel/time/posix-timers.c:1161 kernel/time/posix-timers.c:1173) do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1)) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:131) Update the correct auxiliary timekeeper.
In the Linux kernel, the following vulnerability has been resolved: net/sched: qfq: Use cl_is_active to determine whether class is active in qfq_rm_from_ag This is more of a preventive patch to make the code more consistent and to prevent possible exploits that employ child qlen manipulations on qfq. use cl_is_active instead of relying on the child qdisc's qlen to determine class activation.
In the Linux kernel, the following vulnerability has been resolved: ice: fix devlink reload call trace Commit 4da71a77fc3b ("ice: read internal temperature sensor") introduced internal temperature sensor reading via HWMON. ice_hwmon_init() was added to ice_init_feature() and ice_hwmon_exit() was added to ice_remove(). As a result if devlink reload is used to reinit the device and then the driver is removed, a call trace can occur. BUG: unable to handle page fault for address: ffffffffc0fd4b5d Call Trace: string+0x48/0xe0 vsnprintf+0x1f9/0x650 sprintf+0x62/0x80 name_show+0x1f/0x30 dev_attr_show+0x19/0x60 The call trace repeats approximately every 10 minutes when system monitoring tools (e.g., sadc) attempt to read the orphaned hwmon sysfs attributes that reference freed module memory. The sequence is: 1. Driver load, ice_hwmon_init() gets called from ice_init_feature() 2. Devlink reload down, flow does not call ice_remove() 3. Devlink reload up, ice_hwmon_init() gets called from ice_init_feature() resulting in a second instance 4. Driver unload, ice_hwmon_exit() called from ice_remove() leaving the first hwmon instance orphaned with dangling pointer Fix this by moving ice_hwmon_exit() from ice_remove() to ice_deinit_features() to ensure proper cleanup symmetry with ice_hwmon_init().