Buffer overflow in VideoLAN VLC media player 1.0.5 allows user-assisted remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via a crafted .mp3 file that is played during bookmark creation.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, does not properly access glyph data during layout actions for floating blocks associated with pseudo-elements, which allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
The Microsoft (1) JScript 5.8 and (2) VBScript 5.8 engines, as used in Internet Explorer 9 through 11 and other products, allow remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Scripting Engine Memory Corruption Vulnerability," a different vulnerability than CVE-2016-0189.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
Microsoft Internet Explorer 9 through 11 and Microsoft Edge allow remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Microsoft Browser Memory Corruption Vulnerability," a different vulnerability than CVE-2016-0105, CVE-2016-0107, CVE-2016-0112, and CVE-2016-0113.
Heap-based buffer overflow in the CDrawPoly::Serialize function in fxscover.exe in Microsoft Windows Fax Services Cover Page Editor 5.2 r2 in Windows XP Professional SP3, Server 2003 R2 Enterprise Edition SP2, and Windows 7 Professional allows remote attackers to execute arbitrary code via a long record in a Fax Cover Page (.cov) file. NOTE: some of these details are obtained from third party information.
Microsoft Internet Explorer 9 through 11 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Internet Explorer Memory Corruption Vulnerability," a different vulnerability than CVE-2016-0105, CVE-2016-0111, CVE-2016-0112, and CVE-2016-0113.
Heap-based buffer overflow in Automated Solutions Modbus/TCP Master OPC Server before 3.0.2 allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via a MODBUS response packet with a crafted length field.
Heap-based buffer overflow in Comctl32.dll (aka the common control library) in Microsoft Windows XP SP2 and SP3, Windows Server 2003 SP2, Windows Vista SP1 and SP2, Windows Server 2008 Gold, SP2, and R2, and Windows 7, when a third-party SVG viewer is used, allows remote attackers to execute arbitrary code via a crafted HTML document that triggers unspecified messages from this viewer, aka "Comctl32 Heap Overflow Vulnerability."
Multiple buffer overflows in the PDF distiller in the Attachment Service component in Research In Motion (RIM) BlackBerry Enterprise Server (BES) software 4.1.7 and earlier and 5.0.0 through 5.0.2, and BlackBerry Professional Software 4.1.4 and earlier, allow user-assisted remote attackers to cause a denial of service or possibly execute arbitrary code via a crafted PDF document.
Buffer overflow in VISIODWG.DLL before 10.0.6880.4 in Microsoft Office Visio allows user-assisted remote attackers to execute arbitrary code via a crafted DXF file, a different vulnerability than CVE-2010-0254 and CVE-2010-0256.
Stack-based buffer overflow in the Lotus Domino Web Access ActiveX control in IBM Lotus iNotes (aka Domino Web Access or DWA) 6.5, 7.0 before 7.0.4, 8.0, 8.0.2, and before 229.281 for Domino 8.0.2 FP4 allows remote attackers to execute arbitrary code via a long URL argument to an unspecified method, aka PRAD7JTNHJ.
Microsoft Internet Explorer 11 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Internet Explorer Memory Corruption Vulnerability," a different vulnerability than CVE-2014-2810, CVE-2014-2811, CVE-2014-2822, CVE-2014-2823, CVE-2014-4057, and CVE-2014-8985.
Heap-based buffer overflow in Internet Explorer 8 on Microsoft Windows 7 allows remote attackers to discover the base address of a Windows .dll file, and possibly have unspecified other impact, via unknown vectors, as demonstrated by Peter Vreugdenhil during a Pwn2Own competition at CanSecWest 2010.
Stack-based buffer overflow in VBScript in Microsoft Windows 2000 SP4, XP SP2 and SP3, and Server 2003 SP2, when Internet Explorer is used, might allow user-assisted remote attackers to execute arbitrary code via a long string in the fourth argument (aka helpfile argument) to the MsgBox function, leading to code execution when the F1 key is pressed, a different vulnerability than CVE-2010-0483.
Microsoft Internet Explorer 11 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Internet Explorer Memory Corruption Vulnerability," a different vulnerability than CVE-2014-2787, CVE-2014-2790, CVE-2014-2802, and CVE-2014-2806.
The tzdriver module in Huawei Mate 7 (Mate7-TL10) smartphones before V100R001CHNC00B126SP03 allows local users to gain privileges or cause a denial of service (memory corruption) via an unspecified input.
Buffer overflow in the Smart Call Home implementation in Cisco NX-OS on Fabric Interconnects in Cisco Unified Computing System 1.4 before 1.4(1i), NX-OS 5.0 before 5.0(3)U2(2) on Nexus 3000 devices, NX-OS 4.1 before 4.1(2)E1(1l) on Nexus 4000 devices, NX-OS 5.x before 5.1(3)N1(1) on Nexus 5000 devices, NX-OS 5.2 before 5.2(3a) on Nexus 7000 devices, and CG-OS CG4 before CG4(2) on Connected 1000 Connected Grid Routers allows remote SMTP servers to execute arbitrary code via a crafted reply, aka Bug IDs CSCtk00695, CSCts56633, CSCts56632, CSCts56628, CSCug14405, and CSCuf61322.
The TEEOS module in Huawei Mate 7 (Mate7-TL10) smartphones before V100R001CHNC00B126SP03 allows local users with root permissions to gain privileges or cause a denial of service (memory corruption) via a crafted application.
Microsoft Internet Explorer 9 through 11 and Microsoft Edge allow remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Microsoft Browser Memory Corruption Vulnerability."
The Chakra JavaScript engine in Microsoft Edge allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Scripting Engine Memory Corruption Vulnerability," a different vulnerability than CVE-2016-3377.
Microsoft Edge allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Microsoft Edge Memory Corruption Vulnerability."
Buffer overflow in the login implementation in the Extension Mobility feature in the Unified Communications Manager Express (CME) component in Cisco IOS 12.4XW, 12.4XY, 12.4XZ, and 12.4YA allows remote attackers to execute arbitrary code or cause a denial of service via crafted HTTP requests, aka Bug ID CSCsq58779.
Buffer overflow in Cisco TelePresence TC Software 4.x and 5.x and TE Software 4.x and 6.0 allows remote attackers to execute arbitrary code via crafted DNS response packets, aka Bug ID CSCty44804.
Microsoft Windows PDF Library in Microsoft Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user, due to the way that Windows PDF Library handles objects in memory, aka "Windows PDF Remote Code Execution Vulnerability". This CVE ID is unique from CVE-2017-8728.
Microsoft Edge in Microsoft Windows 10 1703 allows an attacker to execute arbitrary code in the context of the current user, due to the way that the Microsoft Edge scripting engine handles objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8649, CVE-2017-8660, CVE-2017-8738, CVE-2017-8740, CVE-2017-8741, CVE-2017-8748, CVE-2017-8752, CVE-2017-8753, CVE-2017-8755, CVE-2017-8756, and CVE-2017-11764.
Internet Explorer in Microsoft Windows 7 SP1, Windows Server 2008 and R2 SP1, Windows 8.1 and Windows RT 8.1, and Windows Server 2012 and R2 allow an attacker to execute arbitrary code in the context of the current user when Internet Explorer improperly accesses objects in memory, aka "Internet Explorer Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8547.
Microsoft Edge in Microsoft Windows 10 Gold, 1511, 1607, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user, due to the way that the Microsoft Edge scripting engine handles objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8649, CVE-2017-8660, CVE-2017-8729, CVE-2017-8740, CVE-2017-8741, CVE-2017-8748, CVE-2017-8752, CVE-2017-8753, CVE-2017-8755, CVE-2017-8756, and CVE-2017-11764.
Microsoft browsers in Microsoft Windows 7, Windows Server 2008 and R2, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allow an attacker to execute arbitrary code in the context of the current user when the JavaScript engines fail to render when handling objects in memory in Microsoft browsers, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8598, CVE-2017-8596, CVE-2017-8618, CVE-2017-8619, CVE-2017-8610, CVE-2017-8601, CVE-2017-8603, CVE-2017-8604, CVE-2017-8605, CVE-2017-8595, CVE-2017-8607, CVE-2017-8608, and CVE-2017-8609
Microsoft Edge in Microsoft Windows 10 1607, 1703, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user, due to the way that Microsoft browser JavaScript engines render content when handling objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8660, CVE-2017-8729, CVE-2017-8738, CVE-2017-8740, CVE-2017-8741, CVE-2017-8748, CVE-2017-8752, CVE-2017-8753, CVE-2017-8755, CVE-2017-8756, and CVE-2017-11764.
Microsoft Edge in Microsoft Windows 10 1511, 1607, 1703, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user, due to the way that the Microsoft Edge scripting engine handles objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8649, CVE-2017-8660, CVE-2017-8729, CVE-2017-8738, CVE-2017-8740, CVE-2017-8741, CVE-2017-8748, CVE-2017-8753, CVE-2017-8755, CVE-2017-8756, and CVE-2017-11764.
Microsoft Edge in Microsoft Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user due to the way that Microsoft browser JavaScript engines render content when handling objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8634, CVE-2017-8635, CVE-2017-8636, CVE-2017-8638, CVE-2017-8639, CVE-2017-8640, CVE-2017-8641, CVE-2017-8645, CVE-2017-8646, CVE-2017-8647, CVE-2017-8656, CVE-2017-8657, CVE-2017-8670, CVE-2017-8671, CVE-2017-8672, and CVE-2017-8674.