The ASN.1 parser (pluto/asn1.c, libstrongswan/asn1/asn1.c, libstrongswan/asn1/asn1_parser.c) in (a) strongSwan 2.8 before 2.8.10, 4.2 before 4.2.16, and 4.3 before 4.3.2; and (b) openSwan 2.6 before 2.6.22 and 2.4 before 2.4.15 allows remote attackers to cause a denial of service (pluto IKE daemon crash) via an X.509 certificate with (1) crafted Relative Distinguished Names (RDNs), (2) a crafted UTCTIME string, or (3) a crafted GENERALIZEDTIME string.
Openswan 2.6.40 allows remote attackers to cause a denial of service (NULL pointer dereference and IKE daemon restart) via IKEv2 packets that lack expected payloads. NOTE: this vulnerability exists because of an incomplete fix for CVE 2013-6466.
The gmp plugin in strongSwan before 5.5.3 does not properly validate RSA public keys before calling mpz_powm_sec, which allows remote peers to cause a denial of service (floating point exception and process crash) via a crafted certificate.
The rsa_pss_params_parse function in libstrongswan/credentials/keys/signature_params.c in strongSwan 5.6.1 allows remote attackers to cause a denial of service via a crafted RSASSA-PSS signature that lacks a mask generation function parameter.
The asn1_length function in strongSwan 2.8 before 2.8.11, 4.2 before 4.2.17, and 4.3 before 4.3.3 does not properly handle X.509 certificates with crafted Relative Distinguished Names (RDNs), which allows remote attackers to cause a denial of service (pluto IKE daemon crash) via malformed ASN.1 data. NOTE: this is due to an incomplete fix for CVE-2009-2185.
charon/sa/ike_sa.c in the charon daemon in strongSWAN before 4.3.1 allows remote attackers to cause a denial of service (NULL pointer dereference and crash) via an invalid IKE_SA_INIT request that triggers "an incomplete state," followed by a CREATE_CHILD_SA request.
charon/sa/tasks/child_create.c in the charon daemon in strongSWAN before 4.3.1 switches the NULL checks for TSi and TSr payloads, which allows remote attackers to cause a denial of service via an IKE_AUTH request without a (1) TSi or (2) TSr traffic selector.
The gmp plugin in strongSwan before 5.7.1 has a Buffer Overflow via a crafted certificate.
strongSwan 4.5.x through 5.2.x before 5.2.1 allows remote attackers to cause a denial of service (invalid pointer dereference) via a crafted IKEv2 Key Exchange (KE) message with Diffie-Hellman (DH) group 1025.
strongSwan 4.2.6 and earlier allows remote attackers to cause a denial of service (daemon crash) via an IKE_SA_INIT message with a large number of NULL values in a Key Exchange payload, which triggers a NULL pointer dereference for the return value of the mpz_export function in the GNU Multiprecision Library (GMP).
strongSwan 5.0.2 through 5.1.0 allows remote attackers to cause a denial of service (NULL pointer dereference and charon daemon crash) via a crafted IKEv1 fragmentation packet.
The compare_dn function in utils/identification.c in strongSwan 4.3.3 through 5.1.1 allows (1) remote attackers to cause a denial of service (out-of-bounds read, NULL pointer dereference, and daemon crash) or (2) remote authenticated users to impersonate arbitrary users and bypass access restrictions via a crafted ID_DER_ASN1_DN ID, related to an "insufficient length check" during identity comparison.
Openswan 2.6.39 and earlier allows remote attackers to cause a denial of service (NULL pointer dereference and IKE daemon restart) via IKEv2 packets that lack expected payloads.
strongSwan 5.6.0 and older allows Remote Denial of Service because of Missing Initialization of a Variable.
strongSwan before 5.1.2 allows remote attackers to cause a denial of service (NULL pointer dereference and IKE daemon crash) via a crafted ID_DER_ASN1_DN ID payload.
The gmp plugin in strongSwan before 5.9.4 has a remote integer overflow via a crafted certificate with an RSASSA-PSS signature. For example, this can be triggered by an unrelated self-signed CA certificate sent by an initiator. Remote code execution cannot occur.
The in-memory certificate cache in strongSwan before 5.9.4 has a remote integer overflow upon receiving many requests with different certificates to fill the cache and later trigger the replacement of cache entries. The code attempts to select a less-often-used cache entry by means of a random number generator, but this is not done correctly. Remote code execution might be a slight possibility.
Openswan 2.6.29 through 2.6.35 allows remote attackers to cause a denial of service (NULL pointer dereference and pluto IKE daemon crash) via an ISAKMP message with an invalid KEY_LENGTH attribute, which is not properly handled by the error handling function.
The gmp plugin in strongSwan before 5.6.0 allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a crafted RSA signature.
The server implementation of the EAP-MSCHAPv2 protocol in the eap-mschapv2 plugin in strongSwan 4.2.12 through 5.x before 5.3.4 does not properly validate local state, which allows remote attackers to bypass authentication via an empty Success message in response to an initial Challenge message.
programs/pluto/ikev1.c in libreswan before 3.17 retransmits in initial-responder states, which allows remote attackers to cause a denial of service (traffic amplification) via a spoofed UDP packet. NOTE: the original behavior complies with the IKEv1 protocol, but has a required security update from the libreswan vendor; as of 2016-06-10, it is expected that several other IKEv1 implementations will have vendor-required security updates, with separate CVE IDs assigned to each.
Dragonfly in Opera before 11.60 allows remote attackers to cause a denial of service (application crash) via unspecified content on a web page, as demonstrated by forbes.com.
Open Ticket Request System (OTRS) 2.3.x before 2.3.6 and 2.4.x before 2.4.8 does not properly handle the matching of Perl regular expressions against HTML e-mail messages, which allows remote attackers to cause a denial of service (CPU consumption) via a large message, a different vulnerability than CVE-2010-2080.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the MP4 dissector could crash. This was addressed in epan/dissectors/file-mp4.c by restricting the box recursion depth.
The XMPP protocol plugin in libpurple in Pidgin before 2.10.1 does not properly handle missing fields in (1) voice-chat and (2) video-chat stanzas, which allows remote attackers to cause a denial of service (application crash) via a crafted message.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the VLAN dissector could crash. This was addressed in epan/dissectors/packet-vlan.c by limiting VLAN tag nesting to restrict the recursion depth.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the IEEE 802.15.4 dissector could crash. This was addressed in epan/dissectors/packet-ieee802154.c by ensuring that an allocation step occurs.
The ReadMetaFromId3v2 function in taglib.cpp in the TagLib plugin in VideoLAN VLC media player 0.9.0 through 1.1.2 does not properly process ID3v2 tags, which allows remote attackers to cause a denial of service (application crash) via a crafted media file.
The am_read_post_data function in mod_auth_mellon before 0.11.1 does not check if the ap_get_client_block function returns an error, which allows remote attackers to cause a denial of service (segmentation fault and process crash) via a crafted POST data.
In Wireshark 2.4.0 to 2.4.5, the TCP dissector could crash. This was addressed in epan/dissectors/packet-tcp.c by preserving valid data sources.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the LWAPP dissector could crash. This was addressed in epan/dissectors/packet-lwapp.c by limiting the encapsulation levels to restrict the recursion depth.
Weborf HTTP Server 0.12.1 and earlier allows remote attackers to cause a denial of service (crash) via Unicode characters in a Connection HTTP header, and possibly other headers.
Vulnerabilities in RPC servers in (1) Microsoft Exchange Server 2000 and earlier, (2) Microsoft SQL Server 2000 and earlier, (3) Windows NT 4.0, and (4) Windows 2000 allow remote attackers to cause a denial of service via malformed inputs.
The SMTP service (MESMTPC.exe) in MailEnable 3.x and 4.25 does not properly perform a length check, which allows remote attackers to cause a denial of service (crash) via a long (1) email address in the MAIL FROM command, or (2) domain name in the RCPT TO command, which triggers an "unhandled invalid parameter error."
The IPMI dissector in Wireshark 1.2.0 through 1.2.9 allows remote attackers to cause a denial of service (infinite loop) via unknown vectors.
The GetStringAMSHandler function in prgxhndl.dll in hndlrsvc.exe in the Intel Alert Handler service (aka Symantec Intel Handler service) in Intel Alert Management System (AMS), as used in Symantec Antivirus Corporate Edition 10.1.4.4010 on Windows 2000 SP4 and Symantec Endpoint Protection before 11.x, does not properly validate the CommandLine field of an AMS request, which allows remote attackers to cause a denial of service (application crash) via a crafted request.
The bgp_dump_routes_func function in bgpd/bgp_dump.c in Quagga does not perform size checks when dumping data, which might allow remote attackers to cause a denial of service (assertion failure and daemon crash) via a large BGP packet.
micro_httpd on the RCA DCM425 cable modem allows remote attackers to cause a denial of service (device reboot) via a long string to TCP port 80.
Impact Financials, Inc. Impact PDF Reader 2.0, 1.2, and other versions for iPhone and iPod touch allows remote attackers to cause a denial of service (server crash) via a "..." body in a POST request.
The ressol function in Botan before 1.10.11 and 1.11.x before 1.11.27 allows remote attackers to cause a denial of service (infinite loop) via unspecified input to the OS2ECP function, related to a composite modulus.
hostapd 0.6.7 through 2.5 and wpa_supplicant 0.6.7 through 2.5 do not reject \n and \r characters in passphrase parameters, which allows remote attackers to cause a denial of service (daemon outage) via a crafted WPS operation.
Mapserver 5.2, 5.4 and 5.6 before 5.6.5-2 improperly validates symbol index values during Mapfile parsing.
A Denial of Service vulnerability was found in Apache Qpid Broker-J versions 7.0.0-7.0.4 when AMQP protocols 0-8, 0-9 or 0-91 are used to publish messages with size greater than allowed maximum message size limit (100MB by default). The broker crashes due to the defect. AMQP protocols 0-10 and 1.0 are not affected.
Versions of Apache CXF Fediz prior to 1.4.4 do not fully disable Document Type Declarations (DTDs) when either parsing the Identity Provider response in the application plugins, or in the Identity Provider itself when parsing certain XML-based parameters.
The cat6000-dot1x component in Cisco IOS 12.2 before 12.2(33)SXI7 does not properly handle (1) a loop between a dot1x enabled port and an open-authentication dot1x enabled port and (2) a loop between a dot1x enabled port and a non-dot1x port, which allows remote attackers to cause a denial of service (traffic storm) via unspecified vectors that trigger many Spanning Tree Protocol (STP) Bridge Protocol Data Unit (BPDU) frames, aka Bug ID CSCtq36327.
Microsoft Host Integration Server (HIS) 2004 SP1, 2006 SP1, 2009, and 2010 allows remote attackers to cause a denial of service (SNA Server service outage) via crafted TCP or UDP traffic, aka "Endless Loop DoS in snabase.exe Vulnerability."
Google Chrome before 11.0.696.57 on Linux does not properly interact with the X Window System, which allows remote attackers to cause a denial of service (application crash) via unspecified vectors.
The _rsvg_css_normalize_font_size function in librsvg 2.40.2 allows context-dependent attackers to cause a denial of service (stack consumption and application crash) via circular definitions in an SVG document.
IIS 4.0 and 5.0 allows remote attackers to cause a denial of service by sending many URLs with a large number of escaped characters, aka the "Myriad Escaped Characters" Vulnerability.
Systematic SitaWare 6.4 SP2 does not validate input from other sources sufficiently. e.g., information utilizing the NVG interface. An attacker can freeze the Situational Layer, which means that the Situational Picture is no longer updated. Unfortunately, the user cannot notice until he tries to work with that layer.