The svpn and policyserver components of the F5 BIG-IP APM client prior to version 7.1.7.1 for Linux and macOS runs as a privileged process and can allow an unprivileged user to get ownership of files owned by root on the local client host. A malicious local unprivileged user may gain knowledge of sensitive information, manipulate certain data, or assume super-user privileges on the local client host.
The Code42 app before 6.8.4, as used in Code42 for Enterprise, on Linux installs with overly permissive permissions on the /usr/local/crashplan/log directory. This allows a user to manipulate symbolic links to escalate privileges, or show the contents of sensitive files that a regular user would not have access to.
IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to to gain privileges due to allowing modification of columns of existing tasks. IBM X-Force ID: 146369.
The mm subsystem in the Linux kernel through 3.2 does not properly enforce the CONFIG_STRICT_DEVMEM protection mechanism, which allows local users to read or write to kernel memory locations in the first megabyte (and bypass slab-allocation access restrictions) via an application that opens the /dev/mem file, related to arch/x86/mm/init.c and drivers/char/mem.c.
VMware Workspace ONE Access, Identity Manager and vRealize Automation contain a privilege escalation vulnerability due to improper permissions in support scripts. A malicious actor with local access can escalate privileges to 'root'.
Moby is an open-source project created by Docker to enable and accelerate software containerization. A bug was found in Moby (Docker Engine) prior to version 20.10.14 where containers were incorrectly started with non-empty inheritable Linux process capabilities, creating an atypical Linux environment and enabling programs with inheritable file capabilities to elevate those capabilities to the permitted set during `execve(2)`. Normally, when executable programs have specified permitted file capabilities, otherwise unprivileged users and processes can execute those programs and gain the specified file capabilities up to the bounding set. Due to this bug, containers which included executable programs with inheritable file capabilities allowed otherwise unprivileged users and processes to additionally gain these inheritable file capabilities up to the container's bounding set. Containers which use Linux users and groups to perform privilege separation inside the container are most directly impacted. This bug did not affect the container security sandbox as the inheritable set never contained more capabilities than were included in the container's bounding set. This bug has been fixed in Moby (Docker Engine) 20.10.14. Running containers should be stopped, deleted, and recreated for the inheritable capabilities to be reset. This fix changes Moby (Docker Engine) behavior such that containers are started with a more typical Linux environment. As a workaround, the entry point of a container can be modified to use a utility like `capsh(1)` to drop inheritable capabilities prior to the primary process starting.
Weak file permissions applied to the Aviatrix VPN Client through 2.2.10 installation directory on Windows and Linux allow a local attacker to execute arbitrary code by gaining elevated privileges through file modifications.
In drivers/char/virtio_console.c in the Linux kernel before 5.13.4, data corruption or loss can be triggered by an untrusted device that supplies a buf->len value exceeding the buffer size. NOTE: the vendor indicates that the cited data corruption is not a vulnerability in any existing use case; the length validation was added solely for robustness in the face of anomalous host OS behavior
In kernel/bpf/hashtab.c in the Linux kernel through 5.13.8, there is an integer overflow and out-of-bounds write when many elements are placed in a single bucket. NOTE: exploitation might be impractical without the CAP_SYS_ADMIN capability.
The is_ashmem_file function in drivers/staging/android/ashmem.c in a certain Qualcomm Innovation Center (QuIC) Android patch for the Linux kernel 3.x mishandles pointer validation within the KGSL Linux Graphics Module, which allows attackers to bypass intended access restrictions by using the /ashmem string as the dentry name.
In the Linux kernel, the following vulnerability has been resolved: s390/zcrypt: fix reference counting on zcrypt card objects Tests with hot-plugging crytpo cards on KVM guests with debug kernel build revealed an use after free for the load field of the struct zcrypt_card. The reason was an incorrect reference handling of the zcrypt card object which could lead to a free of the zcrypt card object while it was still in use. This is an example of the slab message: kernel: 0x00000000885a7512-0x00000000885a7513 @offset=1298. First byte 0x68 instead of 0x6b kernel: Allocated in zcrypt_card_alloc+0x36/0x70 [zcrypt] age=18046 cpu=3 pid=43 kernel: kmalloc_trace+0x3f2/0x470 kernel: zcrypt_card_alloc+0x36/0x70 [zcrypt] kernel: zcrypt_cex4_card_probe+0x26/0x380 [zcrypt_cex4] kernel: ap_device_probe+0x15c/0x290 kernel: really_probe+0xd2/0x468 kernel: driver_probe_device+0x40/0xf0 kernel: __device_attach_driver+0xc0/0x140 kernel: bus_for_each_drv+0x8c/0xd0 kernel: __device_attach+0x114/0x198 kernel: bus_probe_device+0xb4/0xc8 kernel: device_add+0x4d2/0x6e0 kernel: ap_scan_adapter+0x3d0/0x7c0 kernel: ap_scan_bus+0x5a/0x3b0 kernel: ap_scan_bus_wq_callback+0x40/0x60 kernel: process_one_work+0x26e/0x620 kernel: worker_thread+0x21c/0x440 kernel: Freed in zcrypt_card_put+0x54/0x80 [zcrypt] age=9024 cpu=3 pid=43 kernel: kfree+0x37e/0x418 kernel: zcrypt_card_put+0x54/0x80 [zcrypt] kernel: ap_device_remove+0x4c/0xe0 kernel: device_release_driver_internal+0x1c4/0x270 kernel: bus_remove_device+0x100/0x188 kernel: device_del+0x164/0x3c0 kernel: device_unregister+0x30/0x90 kernel: ap_scan_adapter+0xc8/0x7c0 kernel: ap_scan_bus+0x5a/0x3b0 kernel: ap_scan_bus_wq_callback+0x40/0x60 kernel: process_one_work+0x26e/0x620 kernel: worker_thread+0x21c/0x440 kernel: kthread+0x150/0x168 kernel: __ret_from_fork+0x3c/0x58 kernel: ret_from_fork+0xa/0x30 kernel: Slab 0x00000372022169c0 objects=20 used=18 fp=0x00000000885a7c88 flags=0x3ffff00000000a00(workingset|slab|node=0|zone=1|lastcpupid=0x1ffff) kernel: Object 0x00000000885a74b8 @offset=1208 fp=0x00000000885a7c88 kernel: Redzone 00000000885a74b0: bb bb bb bb bb bb bb bb ........ kernel: Object 00000000885a74b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74d8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74e8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74f8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a7508: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 68 4b 6b 6b 6b a5 kkkkkkkkkkhKkkk. kernel: Redzone 00000000885a7518: bb bb bb bb bb bb bb bb ........ kernel: Padding 00000000885a756c: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZ kernel: CPU: 0 PID: 387 Comm: systemd-udevd Not tainted 6.8.0-HF #2 kernel: Hardware name: IBM 3931 A01 704 (KVM/Linux) kernel: Call Trace: kernel: [<00000000ca5ab5b8>] dump_stack_lvl+0x90/0x120 kernel: [<00000000c99d78bc>] check_bytes_and_report+0x114/0x140 kernel: [<00000000c99d53cc>] check_object+0x334/0x3f8 kernel: [<00000000c99d820c>] alloc_debug_processing+0xc4/0x1f8 kernel: [<00000000c99d852e>] get_partial_node.part.0+0x1ee/0x3e0 kernel: [<00000000c99d94ec>] ___slab_alloc+0xaf4/0x13c8 kernel: [<00000000c99d9e38>] __slab_alloc.constprop.0+0x78/0xb8 kernel: [<00000000c99dc8dc>] __kmalloc+0x434/0x590 kernel: [<00000000c9b4c0ce>] ext4_htree_store_dirent+0x4e/0x1c0 kernel: [<00000000c9b908a2>] htree_dirblock_to_tree+0x17a/0x3f0 kernel: ---truncated---
An out-of-bounds memory access flaw was found in the Linux kernel’s XFS file system in how a user restores an XFS image after failure (with a dirty log journal). This flaw allows a local user to crash or potentially escalate their privileges on the system.
Insufficient validation in the IOCTL (Input Output Control) input buffer in AMD uProf may allow an authenticated user to load an unsigned driver potentially leading to arbitrary kernel execution.
The overlayfs implementation in the Linux kernel through 4.5.2 does not properly restrict the mount namespace, which allows local users to gain privileges by mounting an overlayfs filesystem on top of a FUSE filesystem, and then executing a crafted setuid program.
Buffer overflow in i40e driver for Intel(R) Ethernet 700 Series Controllers versions before 7.0 may allow an authenticated user to potentially enable an escalation of privilege via local access.
In sk_clone_lock of sock.c, there is a possible memory corruption due to type confusion. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android kernel. Android ID: A-113509306. References: Upstream kernel.
The compat_alloc_user_space functions in include/asm/compat.h files in the Linux kernel before 2.6.36-rc4-git2 on 64-bit platforms do not properly allocate the userspace memory required for the 32-bit compatibility layer, which allows local users to gain privileges by leveraging the ability of the compat_mc_getsockopt function (aka the MCAST_MSFILTER getsockopt support) to control a certain length value, related to a "stack pointer underflow" issue, as exploited in the wild in September 2010.
Linux kernel 2.4 and 2.2 allows local users to read kernel memory and possibly gain privileges via a negative argument to the sysctl call.
mount in util-linux 2.19 and earlier does not remove the /etc/mtab~ lock file after a failed attempt to add a mount entry, which has unspecified impact and local attack vectors.
Use-after-free vulnerability in drivers/net/ppp/ppp_generic.c in the Linux kernel before 4.5.2 allows local users to cause a denial of service (memory corruption and system crash, or spinlock) or possibly have unspecified other impact by removing a network namespace, related to the ppp_register_net_channel and ppp_unregister_channel functions.
Linux kernel before 2.3.18 or 2.2.13pre15, with SLIP and PPP options, allows local unprivileged users to forge IP packets via the TIOCSETD option on tty devices.
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7925e: fix use-after-free in free_irq() From commit a304e1b82808 ("[PATCH] Debug shared irqs"), there is a test to make sure the shared irq handler should be able to handle the unexpected event after deregistration. For this case, let's apply MT76_REMOVED flag to indicate the device was removed and do not run into the resource access anymore.
KDE klock allows local users to kill arbitrary processes by specifying an arbitrary PID in the .kss.pid file.
The do_gfs2_set_flags function in fs/gfs2/file.c in the Linux kernel before 2.6.34-git10 does not verify the ownership of a file, which allows local users to bypass intended access restrictions via a SETFLAGS ioctl request.
The btrfs_xattr_set_acl function in fs/btrfs/acl.c in btrfs in the Linux kernel 2.6.34 and earlier does not check file ownership before setting an ACL, which allows local users to bypass file permissions by setting arbitrary ACLs, as demonstrated using setfacl.
The pt_chown command in Linux allows local users to modify TTY terminal devices that belong to other users.
Denial of service in Linux 2.2.0 running the ldd command on a core file.
Incorrect buffer length handling in the ncp_read_kernel function in fs/ncpfs/ncplib_kernel.c in the Linux kernel through 4.15.11, and in drivers/staging/ncpfs/ncplib_kernel.c in the Linux kernel 4.16-rc through 4.16-rc6, could be exploited by malicious NCPFS servers to crash the kernel or execute code.
In the Linux kernel, the following vulnerability has been resolved: media: edia: dvbdev: fix a use-after-free In dvb_register_device, *pdvbdev is set equal to dvbdev, which is freed in several error-handling paths. However, *pdvbdev is not set to NULL after dvbdev's deallocation, causing use-after-frees in many places, for example, in the following call chain: budget_register |-> dvb_dmxdev_init |-> dvb_register_device |-> dvb_dmxdev_release |-> dvb_unregister_device |-> dvb_remove_device |-> dvb_device_put |-> kref_put When calling dvb_unregister_device, dmxdev->dvbdev (i.e. *pdvbdev in dvb_register_device) could point to memory that had been freed in dvb_register_device. Thereafter, this pointer is transferred to kref_put and triggering a use-after-free.
Some configurations of NIS+ in Linux allowed attackers to log in as the user "+".
The udl_fb_mmap function in drivers/gpu/drm/udl/udl_fb.c at the Linux kernel version 3.4 and up to and including 4.15 has an integer-overflow vulnerability allowing local users with access to the udldrmfb driver to obtain full read and write permissions on kernel physical pages, resulting in a code execution in kernel space.
The proc filesystem implementation in the Linux kernel 2.6.37 and earlier does not restrict access to the /proc directory tree of a process after this process performs an exec of a setuid program, which allows local users to obtain sensitive information or cause a denial of service via open, lseek, read, and write system calls.
The do_pages_move function in mm/migrate.c in the Linux kernel before 2.6.33-rc7 does not validate node values, which allows local users to read arbitrary kernel memory locations, cause a denial of service (OOPS), and possibly have unspecified other impact by specifying a node that is not part of the kernel's node set.
A flaw was found in the Linux kernel's udmabuf device driver. The specific flaw exists within a fault handler. The issue results from the lack of proper validation of user-supplied data, which can result in a memory access past the end of an array. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of the kernel.
A use-after-free flaw was found in the Linux kernel’s Netfilter functionality when adding a rule with NFTA_RULE_CHAIN_ID. This flaw allows a local user to crash or escalate their privileges on the system.
A memory leak flaw was found in the Linux kernel’s io_uring functionality in how a user registers a buffer ring with IORING_REGISTER_PBUF_RING, mmap() it, and then frees it. This flaw allows a local user to crash or potentially escalate their privileges on the system.
The specific flaw exists within the DPT I2O Controller driver. The issue results from the lack of proper locking when performing operations on an object. An attacker can leverage this in conjunction with other vulnerabilities to escalate privileges and execute arbitrary code in the context of the kernel.
An issue was discovered in the Linux kernel 3.11 through 5.10.16, as used by Xen. To service requests to the PV backend, the driver maps grant references provided by the frontend. In this process, errors may be encountered. In one case, an error encountered earlier might be discarded by later processing, resulting in the caller assuming successful mapping, and hence subsequent operations trying to access space that wasn't mapped. In another case, internal state would be insufficiently updated, preventing safe recovery from the error. This affects drivers/block/xen-blkback/blkback.c.
The Linux kernel before 2.6.32.4 allows local users to gain privileges or cause a denial of service (panic) by calling the (1) mmap or (2) mremap function, aka the "do_mremap() mess" or "mremap/mmap mess."
The ecryptfs_privileged_open function in fs/ecryptfs/kthread.c in the Linux kernel before 4.6.3 allows local users to gain privileges or cause a denial of service (stack memory consumption) via vectors involving crafted mmap calls for /proc pathnames, leading to recursive pagefault handling.
The adreno_perfcounter_query_group function in drivers/gpu/msm/adreno_perfcounter.c in the Adreno GPU driver for the Linux kernel 3.x, as used in Qualcomm Innovation Center (QuIC) Android contributions for MSM devices and other products, uses an incorrect integer data type, which allows attackers to cause a denial of service (integer overflow, heap-based buffer overflow, and incorrect memory allocation) or possibly have unspecified other impact via a crafted IOCTL_KGSL_PERFCOUNTER_QUERY ioctl call.
A use-after-free flaw was found in the Linux kernel’s Ext4 File System in how a user triggers several file operations simultaneously with the overlay FS usage. This flaw allows a local user to crash or potentially escalate their privileges on the system. Only if patch 9a2544037600 ("ovl: fix use after free in struct ovl_aio_req") not applied yet, the kernel could be affected.
A time-of-check to time-of-use issue exists in io_uring subsystem's IORING_OP_CLOSE operation in the Linux kernel's versions 5.6 - 5.11 (inclusive), which allows a local user to elevate their privileges to root. Introduced in b5dba59e0cf7e2cc4d3b3b1ac5fe81ddf21959eb, patched in 9eac1904d3364254d622bf2c771c4f85cd435fc2, backported to stable in 788d0824269bef539fe31a785b1517882eafed93.
Buffer overflow in the fuse_do_ioctl function in fs/fuse/file.c in the Linux kernel before 2.6.37 allows local users to cause a denial of service or possibly have unspecified other impact by leveraging the ability to operate a CUSE server.
The Linux kernel 4.15 has a Buffer Overflow via an SNDRV_SEQ_IOCTL_SET_CLIENT_POOL ioctl write operation to /dev/snd/seq by a local user.
The blkcg_init_queue function in block/blk-cgroup.c in the Linux kernel before 4.11 allows local users to cause a denial of service (double free) or possibly have unspecified other impact by triggering a creation failure.
The overlayfs implementation in the Linux kernel through 4.5.2 does not properly maintain POSIX ACL xattr data, which allows local users to gain privileges by leveraging a group-writable setgid directory.
The iowarrior_write function in drivers/usb/misc/iowarrior.c in the Linux kernel before 2.6.37 does not properly allocate memory, which might allow local users to trigger a heap-based buffer overflow, and consequently cause a denial of service or gain privileges, via a long report.
In the Linux kernel before 2.6.34, a range check issue in drivers/gpu/drm/radeon/atombios.c could cause an off by one (buffer overflow) problem. NOTE: At least one Linux maintainer believes that this CVE is incorrectly assigned and should be rejected because the value is hard coded and are not user-controllable where it is used
Use After Free vulnerability in Linux kernel traffic control index filter (tcindex) allows Privilege Escalation. The imperfect hash area can be updated while packets are traversing, which will cause a use-after-free when 'tcf_exts_exec()' is called with the destroyed tcf_ext. A local attacker user can use this vulnerability to elevate its privileges to root. This issue affects Linux Kernel: from 4.14 before git commit ee059170b1f7e94e55fa6cadee544e176a6e59c2.