The decode_uncompressed function in libavcodec/faxcompr.c in FFmpeg before 2.8.2 does not validate uncompressed runs, which allows remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via crafted CCITT FAX data.
The get_cox function in libavcodec/jpeg2000dec.c in FFmpeg before 2.1 does not properly validate the reduction factor, which allows remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via crafted JPEG2000 data.
The flashsv_decode_frame function in libavcodec/flashsv.c in FFmpeg before 2.1 does not properly validate a certain height value, which allows remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via crafted Flash Screen Video data.
In the mxf_read_primer_pack function in libavformat/mxfdec.c in FFmpeg 3.3.3 -> 2.4, an integer signedness error might occur when a crafted file, which claims a large "item_num" field such as 0xffffffff, is provided. As a result, the variable "item_num" turns negative, bypassing the check for a large value.
The decodeTonalComponents function in the Actrac3 codec (atrac3.c) in libavcodec in FFmpeg 0.7.x before 0.7.12, and 0.8.x before 0.8.11; and in Libav 0.5.x before 0.5.9, 0.6.x before 0.6.6, 0.7.x before 0.7.5, and 0.8.x before 0.8.1 allows remote attackers to cause a denial of service (infinite loop and crash) and possibly execute arbitrary code via a large component count in an Atrac 3 file.
The decode_init function in kmvc.c in libavcodec in FFmpeg before 0.10 and in Libav 0.5.x before 0.5.9, 0.6.x before 0.6.6, 0.7.x before 0.7.6, and 0.8.x before 0.8.1 allows remote attackers to cause a denial of service (application crash) and possibly execute arbitrary code via a large palette size in a KMVC encoded file.
FFmpeg 0.5.x, as used in MPlayer and other products, allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a malformed VC-1 file.
FFmpeg before 0.5.4, as used in MPlayer and other products, allows remote attackers to cause a denial of service (heap memory corruption and application crash) or possibly execute arbitrary code via a malformed RealMedia file.
FFmpeg before 0.5.4, as used in MPlayer and other products, allows remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via a malformed WMV file.
flicvideo.c in libavcodec 0.6 and earlier in FFmpeg, as used in MPlayer and other products, allows remote attackers to execute arbitrary code via a crafted flic file, related to an "arbitrary offset dereference vulnerability."
A heap-based Buffer Overflow vulnerability exits in FFmpeg 4.2 in deflate16 at libavfilter/vf_neighbor.c, which might lead to memory corruption and other potential consequences.
A heap-based Buffer Overflow vulnerability exists in FFmpeg 4.2 in filter_intra at libavfilter/vf_bwdif.c, which might lead to memory corruption and other potential consequences.
A heap-based Buffer Overflow vulnerability exists in FFmpeg 4.2 at ff_fill_rectangle in libavfilter/drawutils.c, which might lead to memory corruption and other potential consequences.
An issue was discovered in function latm_write_packet in libavformat/latmenc.c in Ffmpeg 4.2.1, allows attackers to cause a Denial of Service or other unspecified impacts due to a Null pointer dereference.
An issue was discovered in function filter_frame in libavfilter/vf_lenscorrection.c in Ffmpeg 4.2.1, allows attackers to cause a Denial of Service or other unspecified impacts due to a division by zero.
A heap-based Buffer Overflow vulnerabililty exists in FFmpeg 4.2 in filter_frame at libavfilter/vf_bitplanenoise.c, which might lead to memory corruption and other potential consequences.
Buffer Overflow vulnerability in function config_input in libavfilter/vf_gblur.c in Ffmpeg 4.2.1, allows attackers to cause a Denial of Service or other unspecified impacts.
A Heap-based Buffer Overflow vulnerability exists in FFmpeg 4.2 at libavfilter/vf_w3fdif.c in filter16_complex_low, which might lead to memory corruption and other potential consequences.
A heap-based Buffer Overflow vulnerability exists in FFmpeg 4.2 in filter_frame at libavfilter/vf_fieldorder.c, which might lead to memory corruption and other potential consequences.
A heap-based Buffer Overflow vulnerability in FFmpeg 4.2 at libavcodec/get_bits.h when writing .mov files, which might lead to memory corruption and other potential consequences.
A heap-based Buffer Overflow vulnerability exists in gaussian_blur at libavfilter/vf_edgedetect.c, which might lead to memory corruption and other potential consequences.
A heap-based Buffer Overflow vulnerability exists in FFmpeg 4.2 at libavfilter/af_afade.c in crossfade_samples_fltp, which might lead to memory corruption and other potential consequences.
A heap-based Buffer Overflow vulnerability exists FFmpeg 4.2 at libavfilter/vf_floodfill.c, which might lead to memory corruption and other potential consequences.
Integer Overflow vulnerability in function filter16_prewitt in libavfilter/vf_convolution.c in Ffmpeg 4.2.1, allows attackers to cause a Denial of Service or other unspecified impacts.
A heap-based Buffer Overflow vulnerability exists FFmpeg 4.2 at libavfilter/vf_edgedetect.c in gaussian_blur, which might lead to memory corruption and other potential consequences.
A heap-based Buffer Overflow vulnerability exists in FFmpeg 4.2 in get_block_row at libavfilter/vf_bm3d.c, which might lead to memory corruption and other potential consequences.
Buffer Overflow vulnerability in FFmpeg 4.2 in mov_write_video_tag due to the out of bounds in libavformat/movenc.c, which could let a remote malicious user obtain sensitive information, cause a Denial of Service, or execute arbitrary code.
A heap-use-after-free in the av_freep function in libavutil/mem.c of FFmpeg 4.2 allows attackers to execute arbitrary code.
A heap-based Buffer Overflow vulnerability exists in FFmpeg 4.2 at libavfilter/vf_colorconstancy.c: in slice_get_derivative, which crossfade_samples_fltp, which might lead to memory corruption and other potential consequences.
The dirac_unpack_idwt_params function in libavcodec/diracdec.c in FFmpeg before 0.10 allows remote attackers to have an unspecified impact via crafted Dirac data.
The av_color_primaries_name function in libavutil/pixdesc.c in FFmpeg 3.3.3 may return a NULL pointer depending on a value contained in a file, but callers do not anticipate this, as demonstrated by the avcodec_string function in libavcodec/utils.c, leading to a NULL pointer dereference. (It is also conceivable that there is security relevance for a NULL pointer dereference in av_color_primaries_name calls within the ffprobe command-line program.)
The dnxhd_decode_header function in libavcodec/dnxhddec.c in FFmpeg 3.0 through 3.3.2 allows remote attackers to cause a denial of service (out-of-array access) or possibly have unspecified other impact via a crafted DNxHD file.
Integer overflow in the ape_decode_frame function in libavcodec/apedec.c in FFmpeg 2.4 through 3.3.2 allows remote attackers to cause a denial of service (out-of-array access and application crash) or possibly have unspecified other impact via a crafted APE file.
The raw_decode function in libavcodec/rawdec.c in FFmpeg before 3.1.2 allows remote attackers to cause a denial of service (memory corruption) or execute arbitrary code via a crafted SWF file.
The ff_log2_16bit_c function in libavutil/intmath.h in FFmpeg before 3.1.4 is vulnerable to reading out-of-bounds memory when it decodes a malformed AIFF file.
The cavs_idct8_add_c function in libavcodec/cavsdsp.c in FFmpeg before 3.1.4 is vulnerable to reading out-of-bounds memory when decoding with cavs_decode.
libavcodec/tiff.c in FFmpeg before 2.8.6 does not properly validate RowsPerStrip values and YCbCr chrominance subsampling factors, which allows remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via a crafted TIFF file, related to the tiff_decode_tag and decode_frame functions.
The mov_read_dref function in libavformat/mov.c in Libav before 11.7 and FFmpeg before 0.11 allows remote attackers to cause a denial of service (memory corruption) or execute arbitrary code via the entries value in a dref box in an MP4 file.
libavcodec/pngenc.c in FFmpeg before 2.8.5 uses incorrect line sizes in certain row calculations, which allows remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via a crafted .avi file, related to the apng_encode_frame and encode_apng functions.
libavcodec/gif.c in FFmpeg before 2.8.6 does not properly calculate a buffer size, which allows remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via a crafted .tga file, related to the gif_image_write_image, gif_encode_init, and gif_encode_close functions.
Integer overflow in the asf_write_packet function in libavformat/asfenc.c in FFmpeg before 2.8.5 allows remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted PTS (aka presentation timestamp) value in a .mov file.
The smka_decode_frame function in libavcodec/smacker.c in FFmpeg before 2.6.5, 2.7.x before 2.7.3, and 2.8.x through 2.8.2 does not verify that the data size is consistent with the number of channels, which allows remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via crafted Smacker data.
Integer overflow in the ff_ivi_init_planes function in libavcodec/ivi.c in FFmpeg before 2.6.5, 2.7.x before 2.7.3, and 2.8.x through 2.8.2 allows remote attackers to cause a denial of service (out-of-bounds heap-memory access) or possibly have unspecified other impact via crafted image dimensions in Indeo Video Interactive data.
The jpeg2000_read_main_headers function in libavcodec/jpeg2000dec.c in FFmpeg before 2.6.5, 2.7.x before 2.7.3, and 2.8.x through 2.8.2 does not enforce uniqueness of the SIZ marker in a JPEG 2000 image, which allows remote attackers to cause a denial of service (out-of-bounds heap-memory access) or possibly have unspecified other impact via a crafted image with two or more of these markers.
The update_dimensions function in libavcodec/vp8.c in FFmpeg through 2.8.1, as used in Google Chrome before 46.0.2490.71 and other products, relies on a coefficient-partition count during multi-threaded operation, which allows remote attackers to cause a denial of service (race condition and memory corruption) or possibly have unspecified other impact via a crafted WebM file.
Integer Overflow vulnerability in function filter16_sobel in libavfilter/vf_convolution.c in Ffmpeg 4.2.1, allows attackers to cause a Denial of Service or other unspecified impacts.
Use-after-free vulnerability in the ff_h264_free_tables function in libavcodec/h264.c in FFmpeg before 2.3.6 allows remote attackers to cause a denial of service or possibly have unspecified other impact via crafted H.264 data in an MP4 file, as demonstrated by an HTML VIDEO element that references H.264 data.
The msrle_decode_pal4 function in msrledec.c in Libav before 10.7 and 11.x before 11.4 and FFmpeg before 2.0.7, 2.2.x before 2.2.15, 2.4.x before 2.4.8, 2.5.x before 2.5.6, and 2.6.x before 2.6.2 allows remote attackers to have unspecified impact via a crafted image, related to a pixel pointer, which triggers an out-of-bounds array access.
Integer Overflow vulnerability in function filter16_roberts in libavfilter/vf_convolution.c in Ffmpeg 4.2.1, allows attackers to cause a Denial of Service or other unspecified impacts.
Integer Overflow vulnerability in function filter_prewitt in libavfilter/vf_convolution.c in Ffmpeg 4.2.1, allows attackers to cause a Denial of Service or other unspecified impacts.