An arbitrary code execution vulnerability was found in the F-Secure Support Tool. A standard user can craft a special configuration file, which when run by administrator can execute any commands.
Remote Desktop Protocol Remote Code Execution Vulnerability
Windows Print Spooler Elevation of Privilege Vulnerability
A remote code execution vulnerability exists in Remote Desktop Services – formerly known as Terminal Services – when an authenticated attacker abuses clipboard redirection, aka 'Remote Desktop Services Remote Code Execution Vulnerability'.
A remote code execution vulnerability exists in the way that Windows Deployment Services TFTP Server handles objects in memory. An attacker who successfully exploited the vulnerability could execute arbitrary code with elevated permissions on a target system. To exploit the vulnerability, an attacker could create a specially crafted request, causing Windows to execute arbitrary code with elevated permissions. The security update addresses the vulnerability by correcting how Windows Deployment Services TFTP Server handles objects in memory, aka 'Windows Deployment Services TFTP Server Remote Code Execution Vulnerability'.
The TFTP client in IBM AIX 6.1 and 7.1, and VIOS 2.2.2.2-FP-26 SP-02, when RBAC is enabled, allows remote authenticated users to bypass intended file-ownership restrictions, and read or overwrite arbitrary files, via unspecified vectors.
CompleteFTPService.exe in the server in EnterpriseDT CompleteFTP before 12.1.4 allows Remote Code Execution by leveraging a Windows user account that has SSH access. The exec command is always run as SYSTEM.
IBM Maximo Asset Management 7.6 is vulnerable to CSV injection, which could allow a remote authenticated attacker to execute arbirary commands on the system. IBM X-Force ID: 161680.
The Forms Authentication feature in the ASP.NET subsystem in Microsoft .NET Framework 1.1 SP1, 2.0 SP2, 3.5 SP1, 3.5.1, and 4.0 allows remote authenticated users to obtain access to arbitrary user accounts via a crafted username, aka "ASP.Net Forms Authentication Bypass Vulnerability."
IBM QRadar 7.2 could allow a remote authenticated attacker to execute arbitrary commands on the system. By sending a specially-crafted request, an attacker could exploit this vulnerability to execute arbitrary commands on the system. IBM Reference #: 1999542.
IBM QRadar SIEM 7.1 before MR2 Patch 13 and 7.2 before 7.2.7 executes unspecified processes at an incorrect privilege level, which makes it easier for remote authenticated users to obtain root access by leveraging a command-injection issue.
A remote code execution vulnerability exists in the way that comctl32.dll handles objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, the attacker could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. An attacker could host a specially crafted website designed to exploit the vulnerability through Internet Explorer and then convince a user to view the website. The attacker could also take advantage of compromised websites, or websites that accept or host user-provided content or advertisements, by adding specially crafted content that could exploit the vulnerability. However, in all cases an attacker would have no way to force a user to view the attacker-controlled content. Instead, an attacker would have to convince a user to take action, typically by an enticement in an email or instant message, or by getting the user to open an attachment sent through email. The security update addresses the vulnerability by modifying how comctl32.dll handles objects in memory.
A remote code execution vulnerability exists in Remote Desktop Services - formerly known as Terminal Services - when an authenticated attacker abuses clipboard redirection, aka 'Remote Desktop Services Remote Code Execution Vulnerability'.
The portal in IBM Tivoli Monitoring (ITM) 6.2.2 through FP9, 6.2.3 through FP5, and 6.3.0 before FP7 allows remote authenticated users to execute arbitrary commands by leveraging Take Action view authority and providing crafted input.
A vulnerability classified as critical has been found in SevOne Network Management System up to 5.7.2.22. This affects the file traceroute.php of the Traceroute Handler. The manipulation leads to privilege escalation with a command injection. It is possible to initiate the attack remotely.
Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2008 SP2 and R2 SP1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allow a remote code execution vulnerability due to the way the Routing and Remote Access service handles requests, aka "Windows RRAS Service Remote Code Execution Vulnerability".
Stack-based buffer overflow in the MailCheck821Address function in nnotes.dll in the nrouter.exe service in the server in IBM Lotus Domino 8.0.x before 8.0.2 FP5 and 8.5.x before 8.5.1 FP2 allows remote attackers to execute arbitrary code via a long e-mail address in an ORGANIZER:mailto header in an iCalendar calendar-invitation e-mail message, aka SPR NRBY7ZPJ9V.
Buffer overflow in Dec2LHA.dll in the AntiVirus Decomposer engine in Symantec Advanced Threat Protection (ATP); Symantec Data Center Security:Server (SDCS:S) 6.x through 6.6 MP1; Symantec Web Gateway; Symantec Endpoint Protection (SEP) before 12.1 RU6 MP5; Symantec Endpoint Protection (SEP) for Mac; Symantec Endpoint Protection (SEP) for Linux before 12.1 RU6 MP5; Symantec Protection Engine (SPE) before 7.0.5 HF01, 7.5.x before 7.5.3 HF03, 7.5.4 before HF01, and 7.8.0 before HF01; Symantec Protection for SharePoint Servers (SPSS) 6.0.3 through 6.0.5 before 6.0.5 HF 1.5 and 6.0.6 before HF 1.6; Symantec Mail Security for Microsoft Exchange (SMSMSE) before 7.0_3966002 HF1.1 and 7.5.x before 7.5_3966008 VHF1.2; Symantec Mail Security for Domino (SMSDOM) before 8.0.9 HF1.1 and 8.1.x before 8.1.3 HF1.2; CSAPI before 10.0.4 HF01; Symantec Message Gateway (SMG) before 10.6.1-4; Symantec Message Gateway for Service Providers (SMG-SP) 10.5 before patch 254 and 10.6 before patch 253; Norton AntiVirus, Norton Security, Norton Internet Security, and Norton 360 before NGC 22.7; Norton Security for Mac before 13.0.2; Norton Power Eraser (NPE) before 5.1; and Norton Bootable Removal Tool (NBRT) before 2016.1 allows remote attackers to execute arbitrary code via a crafted file.
The Microsoft JET Database Engine in Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an attacker to take control of an affected system, due to how it handles objects in memory, aka "Microsoft JET Database Engine Remote Code Execution Vulnerability". This CVE ID is unique from CVE-2017-8717.
The I420VideoFrame::CreateFrame function in the WebRTC implementation in Mozilla Firefox before 45.0 on Windows omits an unspecified status check, which might allow remote attackers to cause a denial of service (memory corruption) or possibly have other impact via unknown vectors.
Buffer overflow in SNMP agent service in Windows 95/98/98SE, Windows NT 4.0, Windows 2000, and Windows XP allows remote attackers to cause a denial of service or execute arbitrary code via a malformed management request. NOTE: this candidate may be split or merged with other candidates. This and other PROTOS-related candidates, especially CVE-2002-0012 and CVE-2002-0013, will be updated when more accurate information is available.
A remote code execution vulnerability exists in .NET Framework and Visual Studio software when the software fails to check the source markup of a file.An attacker who successfully exploited the vulnerability could run arbitrary code in the context of the current user, aka '.NET Framework and Visual Studio Remote Code Execution Vulnerability'.
Stack-based buffer overflow in the execvp_nc function in the ov.dll module in HP OpenView Network Node Manager (OV NNM) 7.51 and 7.53, when running on Windows, allows remote attackers to execute arbitrary code via a long HTTP request to webappmon.exe.
Stack-based buffer overflow in the Remote Procedure Call Subsystem (RPCSS) in Microsoft Windows XP SP2 and SP3 and Server 2003 SP2 allows local users to gain privileges via a crafted LPC message that requests an LRPC connection from an LPC server to a client, aka "LPC Message Buffer Overrun Vulnerability."
Buffer overflow in the GetDriverSettings function in nipplib.dll in Novell iPrint Client before 5.78 on Windows allows remote attackers to execute arbitrary code via a long realm field, a different vulnerability than CVE-2011-3173.
Memory leak in the airspy_probe function in drivers/media/usb/airspy/airspy.c in the airspy USB driver in the Linux kernel before 4.7 allows local users to cause a denial of service (memory consumption) via a crafted USB device that emulates many VFL_TYPE_SDR or VFL_TYPE_SUBDEV devices and performs many connect and disconnect operations.
Buffer overflow in the message-protocol implementation in the Server in IBM Tivoli Storage Manager (TSM) FastBack 5.x.x before 5.5.7, and 6.1.0.0, allows remote attackers to read and modify data, and possibly have other impact, via an unspecified command.
Microsoft Office XP SP3, Office 2004 and 2008 for Mac, Office for Mac 2011, and Open XML File Format Converter for Mac allow remote attackers to execute arbitrary code via a crafted Office document that triggers memory corruption, aka "MSO Large SPID Read AV Vulnerability."
Multiple buffer overflows in fs/nfsd/nfs4xdr.c in the XDR implementation in the NFS server in the Linux kernel before 2.6.34-rc6 allow remote attackers to cause a denial of service (panic) or possibly execute arbitrary code via a crafted NFSv4 compound WRITE request, related to the read_buf and nfsd4_decode_compound functions.
Buffer overflow in CoreAudio, as used in Apple iTunes before 10.5, allows remote attackers to execute arbitrary code or cause a denial of service (application crash) via a crafted Advanced Audio Coding (AAC) stream.
Buffer overflow in the niu_get_ethtool_tcam_all function in drivers/net/niu.c in the Linux kernel before 2.6.36-rc4 allows local users to cause a denial of service or possibly have unspecified other impact via the ETHTOOL_GRXCLSRLALL ethtool command.
Buffer overflow in the Data Transfer Program in IBM i Access 5770-XE1 5R4, 6.1, and 7.1 on Windows allows local users to gain privileges via unspecified vectors.
Buffer overflow in Ruby 1.9.x before 1.9.1-p429 on Windows might allow local users to gain privileges via a crafted ARGF.inplace_mode value that is not properly handled when constructing the filenames of the backup files.
The compat_alloc_user_space functions in include/asm/compat.h files in the Linux kernel before 2.6.36-rc4-git2 on 64-bit platforms do not properly allocate the userspace memory required for the 32-bit compatibility layer, which allows local users to gain privileges by leveraging the ability of the compat_mc_getsockopt function (aka the MCAST_MSFILTER getsockopt support) to control a certain length value, related to a "stack pointer underflow" issue, as exploited in the wild in September 2010.
The IPT_SO_SET_REPLACE setsockopt implementation in the netfilter subsystem in the Linux kernel before 4.6 allows local users to cause a denial of service (out-of-bounds read) or possibly obtain sensitive information from kernel heap memory by leveraging in-container root access to provide a crafted offset value that leads to crossing a ruleset blob boundary.
Stack-based buffer overflow in the NSFComputeEvaluateExt function in Nnotes.dll in IBM Lotus Domino 8.5.2 allows remote authenticated users to execute arbitrary code via a long tHPRAgentName parameter in an fmHttpPostRequest OpenForm action to WebAdmin.nsf.
WebKit in Apple Safari before 5.0.1 on Mac OS X 10.5 through 10.6 and Windows, and before 4.1.1 on Mac OS X 10.4; and webkitgtk before 1.2.6; does not properly handle dynamic modification of a text node, which allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via a crafted HTML document.
Adobe Reader and Acrobat before 11.0.16, Acrobat and Acrobat Reader DC Classic before 15.006.30172, and Acrobat and Acrobat Reader DC Continuous before 15.016.20039 on Windows and OS X allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2016-1037, CVE-2016-1063, CVE-2016-1064, CVE-2016-1071, CVE-2016-1072, CVE-2016-1073, CVE-2016-1074, CVE-2016-1076, CVE-2016-1077, CVE-2016-1078, CVE-2016-1080, CVE-2016-1081, CVE-2016-1082, CVE-2016-1083, CVE-2016-1084, CVE-2016-1085, CVE-2016-1086, CVE-2016-1088, CVE-2016-1093, CVE-2016-1095, CVE-2016-1116, CVE-2016-1118, CVE-2016-1119, CVE-2016-1120, CVE-2016-1123, CVE-2016-1124, CVE-2016-1125, CVE-2016-1126, CVE-2016-1127, CVE-2016-1128, CVE-2016-1129, CVE-2016-1130, CVE-2016-4088, CVE-2016-4089, CVE-2016-4093, CVE-2016-4094, CVE-2016-4096, CVE-2016-4097, CVE-2016-4098, CVE-2016-4099, CVE-2016-4100, CVE-2016-4101, CVE-2016-4103, CVE-2016-4104, and CVE-2016-4105.
WebKit in Apple iOS before 10, tvOS before 10, iTunes before 12.5.1 on Windows, and Safari before 10 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, a different vulnerability than CVE-2016-4759, CVE-2016-4765, CVE-2016-4766, and CVE-2016-4767.
Adobe Reader and Acrobat before 11.0.17, Acrobat and Acrobat Reader DC Classic before 15.006.30198, and Acrobat and Acrobat Reader DC Continuous before 15.017.20050 on Windows and OS X allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2016-4191, CVE-2016-4192, CVE-2016-4193, CVE-2016-4194, CVE-2016-4195, CVE-2016-4196, CVE-2016-4197, CVE-2016-4198, CVE-2016-4199, CVE-2016-4200, CVE-2016-4201, CVE-2016-4202, CVE-2016-4203, CVE-2016-4204, CVE-2016-4205, CVE-2016-4206, CVE-2016-4207, CVE-2016-4211, CVE-2016-4212, CVE-2016-4213, CVE-2016-4214, CVE-2016-4250, CVE-2016-4251, CVE-2016-4252, and CVE-2016-4254.
Buffer overflow in VB-TSQL debugger object (vbsdicli.exe) in Visual Studio 6.0 Enterprise Edition allows remote attackers to execute arbitrary commands.
The TCP/IP stack in Microsoft Windows Vista SP1 and SP2, Windows Server 2008 Gold, SP2, and R2, and Windows 7 does not properly handle malformed IPv6 packets, which allows remote attackers to cause a denial of service (system hang) via multiple crafted packets, aka "IPv6 Memory Corruption Vulnerability."
WebKit in Apple Safari before 5.0.1 on Mac OS X 10.5 through 10.6 and Windows, and before 4.1.1 on Mac OS X 10.4; and webkitgtk before 1.2.6; accesses uninitialized memory during processing of the (1) :first-letter and (2) :first-line pseudo-elements in an SVG text element, which allows remote attackers to execute arbitrary code or cause a denial of service (application crash) via a crafted document.
The dma_rx function in drivers/net/wireless/b43/dma.c in the Linux kernel before 2.6.39 does not properly allocate receive buffers, which allows remote attackers to cause a denial of service (system crash) via a crafted frame.
Adobe Reader and Acrobat 9.x before 9.3.3, and 8.x before 8.2.3 on Windows and Mac OS X, allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2010-1295, CVE-2010-2202, CVE-2010-2207, CVE-2010-2210, CVE-2010-2211, and CVE-2010-2212.
Buffer overflow in Adobe Flash Player before 10.3.183.11 and 11.x before 11.1.102.55 on Windows, Mac OS X, Linux, and Solaris and before 11.1.102.59 on Android, and Adobe AIR before 3.1.0.4880, allows attackers to execute arbitrary code via unspecified vectors.
Adobe Flash Player before 10.3.183.11 and 11.x before 11.1.102.55 on Windows, Mac OS X, Linux, and Solaris and before 11.1.102.59 on Android, and Adobe AIR before 3.1.0.4880, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-2445, CVE-2011-2451, CVE-2011-2452, CVE-2011-2454, CVE-2011-2455, CVE-2011-2459, and CVE-2011-2460.
WebKit in Apple Safari before 5.0.1 on Mac OS X 10.5 through 10.6 and Windows, and before 4.1.1 on Mac OS X 10.4; and webkitgtk before 1.2.6; allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to the rendering of an inline element.
A remote code execution vulnerability exists in the way that Windows Deployment Services TFTP Server handles objects in memory, aka "Windows Deployment Services TFTP Server Remote Code Execution Vulnerability." This affects Windows Server 2012 R2, Windows Server 2008, Windows Server 2012, Windows Server 2019, Windows Server 2016, Windows Server 2008 R2, Windows 10 Servers.
Adobe Reader and Acrobat before 11.0.17, Acrobat and Acrobat Reader DC Classic before 15.006.30198, and Acrobat and Acrobat Reader DC Continuous before 15.017.20050 on Windows and OS X allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2016-4191, CVE-2016-4192, CVE-2016-4193, CVE-2016-4194, CVE-2016-4195, CVE-2016-4196, CVE-2016-4197, CVE-2016-4198, CVE-2016-4199, CVE-2016-4200, CVE-2016-4201, CVE-2016-4202, CVE-2016-4203, CVE-2016-4204, CVE-2016-4205, CVE-2016-4206, CVE-2016-4207, CVE-2016-4208, CVE-2016-4211, CVE-2016-4212, CVE-2016-4213, CVE-2016-4214, CVE-2016-4250, CVE-2016-4251, CVE-2016-4252, CVE-2016-4254, CVE-2016-4265, CVE-2016-4266, CVE-2016-4267, CVE-2016-4268, and CVE-2016-4269.