Unspecified vulnerability in Oracle Java SE 6u71, 7u51, and 8, and Java SE Embedded 7u51, allows remote attackers to affect integrity via unknown vectors related to Deployment.
Unspecified vulnerability in the Oracle WebLogic Server component in Oracle Fusion Middleware 10.3.6, 12.1.2, and 12.1.3 allows remote attackers to affect integrity via vectors related to Core Components.
Unspecified vulnerability in the Oracle Knowledge Management component in Oracle E-Business Suite 11.5.10.2, 12.0.6, and 12.1.2 allows remote attackers to affect integrity via unknown vectors.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 3.1 (Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:L/A:N).
In OpenSSH 7.9, scp.c in the scp client allows remote SSH servers to bypass intended access restrictions via the filename of . or an empty filename. The impact is modifying the permissions of the target directory on the client side.
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JGSS). Supported versions that are affected are Java SE: 6u171, 7u161, 8u152 and 9.0.1; Java SE Embedded: 8u151; JRockit: R28.3.16. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:H/A:N).
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: AWT). Supported versions that are affected are Java SE: 6u171, 7u161, 8u152 and 9.0.1; Java SE Embedded: 8u151. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 6.1 (Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:N/I:H/A:N).
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u201, 7u191, 8u182 and 11; Java SE Embedded: 8u181. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g. code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g. code installed by an administrator). CVSS 3.0 Base Score 3.4 (Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:N/I:L/A:N).
Unspecified vulnerability in the Oracle Applications Framework component in Oracle E-Business Suite 11.5.10.2, 12.1, and 12.2 allows remote attackers to affect integrity via vectors related to UIX.
Unspecified vulnerability in the Oracle Application Object Library component in Oracle E-Business Suite 12.0.6 and 12.1.3 allows remote attackers to affect integrity via unknown vectors related to Error Messages.
Cross-site scripting (XSS) vulnerability in the command-line client in MySQL 5.0.26 through 5.0.45, and other versions including versions later than 5.0.45, when the --html option is enabled, allows attackers to inject arbitrary web script or HTML by placing it in a database cell, which might be accessed by this client when composing an HTML document. NOTE: as of 20081031, the issue has not been fixed in MySQL 5.0.67.
Unspecified vulnerability in Oracle Java SE 5.0u71, 6u81, 7u67, and 8u20, and Java SE Embedded 7u60, allows remote attackers to affect integrity via unknown vectors related to Libraries.
Unspecified vulnerability in the Java SE component in Oracle Java SE 7u60 and 8u5 allows remote attackers to affect integrity via unknown vectors related to Deployment, a different vulnerability than CVE-2014-4220.
The session-restore feature in Mozilla Firefox before 28.0 and SeaMonkey before 2.25 does not consider the Content Security Policy of a data: URL, which makes it easier for remote attackers to conduct cross-site scripting (XSS) attacks via a crafted document that is accessed after a browser restart.
Unspecified vulnerability in the PeopleSoft Enterprise PeopleTools component in Oracle PeopleSoft Products 8.52 and 8.53 allows remote attackers to affect integrity via vectors related to PIA Core Technology, a different vulnerability than CVE-2014-0445.
Unspecified vulnerability in Oracle Java SE 5.0u71, 6u81, 7u67, and 8u20; Java SE Embedded 7u60; and JRockit R27.8.3 and JRockit R28.3.3 allows remote attackers to affect integrity via unknown vectors related to Security.
Vulnerability in the Java SE, Java SE Embedded, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 7u291, 8u281, 11.0.10, 16; Java SE Embedded: 8u281; Oracle GraalVM Enterprise Edition: 19.3.5, 20.3.1.2 and 21.0.0.2. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, Oracle GraalVM Enterprise Edition. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Java SE, Java SE Embedded, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 5.3 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:H/A:N).
Netty is an open-source, asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. In Netty (io.netty:netty-codec-http2) before version 4.1.60.Final there is a vulnerability that enables request smuggling. If a Content-Length header is present in the original HTTP/2 request, the field is not validated by `Http2MultiplexHandler` as it is propagated up. This is fine as long as the request is not proxied through as HTTP/1.1. If the request comes in as an HTTP/2 stream, gets converted into the HTTP/1.1 domain objects (`HttpRequest`, `HttpContent`, etc.) via `Http2StreamFrameToHttpObjectCodec `and then sent up to the child channel's pipeline and proxied through a remote peer as HTTP/1.1 this may result in request smuggling. In a proxy case, users may assume the content-length is validated somehow, which is not the case. If the request is forwarded to a backend channel that is a HTTP/1.1 connection, the Content-Length now has meaning and needs to be checked. An attacker can smuggle requests inside the body as it gets downgraded from HTTP/2 to HTTP/1.1. For an example attack refer to the linked GitHub Advisory. Users are only affected if all of this is true: `HTTP2MultiplexCodec` or `Http2FrameCodec` is used, `Http2StreamFrameToHttpObjectCodec` is used to convert to HTTP/1.1 objects, and these HTTP/1.1 objects are forwarded to another remote peer. This has been patched in 4.1.60.Final As a workaround, the user can do the validation by themselves by implementing a custom `ChannelInboundHandler` that is put in the `ChannelPipeline` behind `Http2StreamFrameToHttpObjectCodec`.
Unspecified vulnerability in the Java SE component in Oracle Java SE Java SE 7u40 and earlier and Java SE 6u60 and earlier allows remote attackers to affect integrity via unknown vectors related to jhat.
A cross-site request forgery (CSRF) vulnerability in Jenkins 2.329 and earlier, LTS 2.319.1 and earlier allows attackers to trigger build of job without parameters when no security realm is set.
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 7u271, 8u261, 11.0.8 and 15; Java SE Embedded: 8u261. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 3.1 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:L/A:N).
Unspecified vulnerability in the Oracle iStore component in Oracle E-Business Suite 11.5.10.2, 12.0.4, 12.0.6, 12.1.1, 12.1.2, and 12.1.3 allows remote attackers to affect integrity via unknown vectors related to Runtime Catalog.
Unspecified vulnerability in the Oracle Application Object Library component in Oracle E-Business Suite 12.0.6 and 12.1.3 allows remote attackers to affect integrity, related to REST Services.
Vulnerability in the PeopleSoft Enterprise CS Campus Community component of Oracle PeopleSoft Products (subcomponent: Frameworks). Supported versions that are affected are 9.0 and 9.2. Difficult to exploit vulnerability allows unauthenticated attacker with network access via HTTP to compromise PeopleSoft Enterprise CS Campus Community. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of PeopleSoft Enterprise CS Campus Community accessible data. CVSS 3.0 Base Score 3.1 (Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:L/A:N).
Unspecified vulnerability in the Oracle Applications Framework component in Oracle E-Business Suite 12.1.3, 12.2.3, 12.2.4, and 12.2.5 allows remote attackers to affect confidentiality and integrity via vectors related to OAF Core.
Unspecified vulnerability in the Oracle GlassFish Server component in Oracle Fusion Middleware 2.1.1, 3.0.1, and 3.1.2; and the Oracle WebLogic Server component in Oracle Fusion Middleware 10.3.6.0, 12.1.1.0, 12.1.2.0, and 12.1.3.0 allows remote attackers to affect integrity via unknown vectors related to Java Server Faces.
Synapse is a Matrix reference homeserver written in python (pypi package matrix-synapse). Matrix is an ecosystem for open federated Instant Messaging and VoIP. In Synapse before version 1.27.0, the notification emails sent for notifications for missed messages or for an expiring account are subject to HTML injection. In the case of the notification for missed messages, this could allow an attacker to insert forged content into the email. The account expiry feature is not enabled by default and the HTML injection is not controllable by an attacker. This is fixed in version 1.27.0.
Spring Framework, versions 5.2.x prior to 5.2.3 are vulnerable to CSRF attacks through CORS preflight requests that target Spring MVC (spring-webmvc module) or Spring WebFlux (spring-webflux module) endpoints. Only non-authenticated endpoints are vulnerable because preflight requests should not include credentials and therefore requests should fail authentication. However a notable exception to this are Chrome based browsers when using client certificates for authentication since Chrome sends TLS client certificates in CORS preflight requests in violation of spec requirements. No HTTP body can be sent or received as a result of this attack.
Unspecified vulnerability in Oracle Java SE 7u67 and 8u20 allows remote attackers to affect integrity via unknown vectors related to Deployment, a different vulnerability than CVE-2014-6476.
It is possible to cause a DoS condition by causing the server to crash in alien-arena 7.33 by supplying various invalid parameters to the download command.
The sandboxing code in libarchive 3.2.0 and earlier mishandles hardlink archive entries of non-zero data size, which might allow remote attackers to write to arbitrary files via a crafted archive file.
The am_read_post_data function in mod_auth_mellon before 0.11.1 does not check if the ap_get_client_block function returns an error, which allows remote attackers to cause a denial of service (segmentation fault and process crash) via a crafted POST data.
drivers/gpu/drm/i915/i915_gem.c in the Graphics Execution Manager (GEM) in the Intel i915 driver in the Direct Rendering Manager (DRM) subsystem in the Linux kernel before 2.6.36 does not properly validate pointers to blocks of memory, which allows local users to write to arbitrary kernel memory locations, and consequently gain privileges, via crafted use of the ioctl interface, related to (1) pwrite and (2) pread operations.
epan/dissectors/packet-pktap.c in the Ethernet dissector in Wireshark 2.x before 2.0.4 mishandles the packet-header data type, which allows remote attackers to cause a denial of service (application crash) via a crafted packet.
Node.js 0.10.x before 0.10.42, 0.12.x before 0.12.10, 4.x before 4.3.0, and 5.x before 5.6.0 allow remote attackers to conduct HTTP request smuggling attacks via a crafted Content-Length HTTP header.
The "insert-blank-characters" capability in caps.c in gnome-terminal (vte) before 0.28.1 allows remote authenticated users to cause a denial of service (CPU and memory consumption and crash) via a crafted file, as demonstrated by a file containing the string "\033[100000000000000000@".
Oracle Web Listener 2.1 allows remote attackers to bypass access restrictions by replacing a character in the URL with its HTTP-encoded (hex) equivalent.
The verify function in the RSA package for Python (Python-RSA) before 3.3 allows attackers to spoof signatures with a small public exponent via crafted signature padding, aka a BERserk attack.
Squid 3.x before 3.5.15 and 4.x before 4.0.7 does not properly append data to String objects, which allows remote servers to cause a denial of service (assertion failure and daemon exit) via a long string, as demonstrated by a crafted HTTP Vary header.
389 Directory Server 1.2.7.5, when built with mozldap, allows remote attackers to cause a denial of service (replica crash) by sending an empty modify request.
lib/rfc1035.c in Squid 2.x, 3.0 through 3.0.STABLE22, and 3.1 through 3.1.0.15 allows remote attackers to cause a denial of service (assertion failure) via a crafted DNS packet that only contains a header.
Xen 4.6.x and earlier allows local guest administrators to cause a denial of service (host reboot) via vectors related to multiple mappings of MMIO pages with different cachability settings.
The fork implementation in the Linux kernel before 4.5 on s390 platforms mishandles the case of four page-table levels, which allows local users to cause a denial of service (system crash) or possibly have unspecified other impact via a crafted application, related to arch/s390/include/asm/mmu_context.h and arch/s390/include/asm/pgalloc.h.
Perl might allow context-dependent attackers to bypass the taint protection mechanism in a child process via duplicate environment variables in envp.
The FwdState::connectedToPeer method in FwdState.cc in Squid before 3.5.14 and 4.0.x before 4.0.6 does not properly handle SSL handshake errors when built with the --with-openssl option, which allows remote attackers to cause a denial of service (application crash) via a plaintext HTTP message.
The HTTP header parsing code in Node.js 0.10.x before 0.10.42, 0.11.6 through 0.11.16, 0.12.x before 0.12.10, 4.x before 4.3.0, and 5.x before 5.6.0 allows remote attackers to bypass an HTTP response-splitting protection mechanism via UTF-8 encoded Unicode characters in the HTTP header, as demonstrated by %c4%8d%c4%8a.
A vulnerability was discovered in ImageMagick where a specially created SVG file loads itself and causes a segmentation fault. This flaw allows a remote attacker to pass a specially crafted SVG file that leads to a segmentation fault, generating many trash files in "/tmp," resulting in a denial of service. When ImageMagick crashes, it generates a lot of trash files. These trash files can be large if the SVG file contains many render actions. In a denial of service attack, if a remote attacker uploads an SVG file of size t, ImageMagick generates files of size 103*t. If an attacker uploads a 100M SVG, the server will generate about 10G.
org.springframework.core.serializer.DefaultDeserializer in Spring AMQP before 1.5.5 allows remote attackers to execute arbitrary code.
CServer::SendMsg in engine/server/server.cpp in Teeworlds 0.7.x before 0.7.5 allows remote attackers to shut down the server.
WebKit, as used in Google Chrome before 7.0.517.44, webkitgtk before 1.2.6, and other products, does not properly handle large text areas, which allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a crafted HTML document.