Adobe Bridge version 11.0.2 (and earlier) is affected by an Out-of-bounds Write vulnerability when parsing a specially crafted file. An unauthenticated attacker could leverage this vulnerability to achieve arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Microsoft XML Core Services 3.0, 4.0, 5.0, and 6.0 accesses uninitialized memory locations, which allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site.
Scripting Engine Memory Corruption Vulnerability
Adobe Flash Player before 10.3.183.15 and 11.x before 11.1.102.62 on Windows, Mac OS X, Linux, and Solaris; before 11.1.111.6 on Android 2.x and 3.x; and before 11.1.115.6 on Android 4.x allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via crafted MP4 data.
After Effects version 18.0 (and earlier) are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Adobe After Effects version 18.2 (and earlier) is affected by a Heap-based Buffer Overflow vulnerability when parsing a specially crafted file. An unauthenticated attacker could leverage this vulnerability to achieve arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Acrobat Reader DC version 21.007.20099 (and earlier), 20.004.30017 (and earlier) and 17.011.30204 (and earlier) are affected by a stack buffer overflow vulnerability due to insecure handling of a crafted file, potentially resulting in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Stack-based buffer overflow in Microsoft Office XP SP3, Office 2003 SP3, Office 2007 SP2, Office 2010, Office 2004 and 2008 for Mac, Office for Mac 2011, and Open XML File Format Converter for Mac allows remote attackers to execute arbitrary code via crafted RTF data, aka "RTF Stack Buffer Overflow Vulnerability."
Microsoft Internet Explorer 6, 7, and 8 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code by accessing an object that (1) was not properly initialized or (2) is deleted, leading to memory corruption, aka "HTML Layout Memory Corruption Vulnerability."
Stack-based buffer overflow in CoolType.dll in Adobe Reader and Acrobat 9.x before 9.4, and 8.x before 8.2.5 on Windows and Mac OS X, allows remote attackers to execute arbitrary code or cause a denial of service (application crash) via a PDF document with a long field in a Smart INdependent Glyphlets (SING) table in a TTF font, as exploited in the wild in September 2010. NOTE: some of these details are obtained from third party information.
Adobe Shockwave Player before 11.5.7.609 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted .dir (aka Director) file, related to (1) an erroneous dereference and (2) a certain Shock.dir file.
Adobe Shockwave Player before 11.5.7.609 does not properly process asset entries, which allows remote attackers to cause a denial of service (memory corruption) or possibly execute arbitrary code via a crafted Shockwave file.
Adobe Shockwave Player before 11.5.7.609 does not properly parse 3D objects in .dir (aka Director) files, which allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a modified field in a 0xFFFFFF49 record.
iml32.dll in Adobe Shockwave Player before 11.5.7.609 does not validate a certain value from a file before using it in file-pointer calculations, which allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted .dir (aka Director) file.
Adobe Flash Player before 9.0.277.0 and 10.x before 10.1.53.64; Adobe AIR before 2.0.2.12610; and Adobe Reader and Acrobat 9.x before 9.3.3, and 8.x before 8.2.3 on Windows and Mac OS X, allow remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via crafted SWF content, related to authplay.dll and the ActionScript Virtual Machine 2 (AVM2) newfunction instruction, as exploited in the wild in June 2010.
Integer signedness error in dirapi.dll in Adobe Shockwave Player before 11.5.7.609 and Adobe Director before 11.5.7.609 allows remote attackers to cause a denial of service (memory corruption) or possibly execute arbitrary code via a crafted .dir file that triggers an invalid read operation.
Unspecified vulnerability in Adobe Flash Player 21.0.0.242 and earlier, as used in the Adobe Flash libraries in Microsoft Internet Explorer 10 and 11 and Microsoft Edge, has unknown impact and attack vectors, a different vulnerability than other CVEs listed in MS16-083.
Adobe Shockwave Player before 11.5.7.609 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via crafted FFFFFF45h Shockwave 3D blocks in a Shockwave file.
Opera before 10.01 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via a crafted domain name.
Adobe Flash Player before 18.0.0.329 and 19.x and 20.x before 20.0.0.306 on Windows and OS X and before 11.2.202.569 on Linux, Adobe AIR before 20.0.0.260, Adobe AIR SDK before 20.0.0.260, and Adobe AIR SDK & Compiler before 20.0.0.260 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2016-0964, CVE-2016-0965, CVE-2016-0966, CVE-2016-0967, CVE-2016-0968, CVE-2016-0970, CVE-2016-0972, CVE-2016-0976, CVE-2016-0977, CVE-2016-0978, CVE-2016-0979, CVE-2016-0980, and CVE-2016-0981.
Adobe Illustrator version 25.2 (and earlier) is affected by a memory corruption vulnerability when parsing a specially crafted file. An unauthenticated attacker could leverage this vulnerability to remote code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Adobe Photoshop versions 21.2.5 (and earlier) and 22.2 (and earlier) are affected by an Out-of-bounds Write vulnerability in the CoolType library. An unauthenticated attacker could leverage this vulnerability to achieve arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Microsoft Office Excel 2002 SP3, 2003 SP3, and 2007 SP1 and SP2; Office 2004 and 2008 for Mac; Open XML File Format Converter for Mac; Office Excel Viewer 2003 SP3; Office Excel Viewer SP1 and SP2; and Office Compatibility Pack for Word, Excel, and PowerPoint 2007 File Formats SP1 and SP2 allows remote attackers to execute arbitrary code via a spreadsheet with a FEATHEADER record containing an invalid cbHdrData size element that affects a pointer offset, aka "Excel Featheader Record Memory Corruption Vulnerability."
Adobe DNG Software Development Kit (SDK) 1.5 and earlier versions have a heap overflow vulnerability. Successful exploitation could lead to arbitrary code execution.
Adobe Bridge versions 10.0.1 and earlier version have an out-of-bounds write vulnerability. Successful exploitation could lead to arbitrary code execution .
Adobe DNG Software Development Kit (SDK) 1.5 and earlier versions have a heap overflow vulnerability. Successful exploitation could lead to arbitrary code execution.
Adobe Acrobat and Reader versions 2020.009.20074 and earlier, 2020.001.30002, 2017.011.30171 and earlier, and 2015.006.30523 and earlier have an out-of-bounds write vulnerability. Successful exploitation could lead to arbitrary code execution .
Adobe Illustrator versions 24.1.2 and earlier have a memory corruption vulnerability. Successful exploitation could lead to arbitrary code execution .
Adobe Bridge versions 10.0.1 and earlier version have an out-of-bounds write vulnerability. Successful exploitation could lead to arbitrary code execution .
Adobe Audition versions 13.0.6 and earlier have an out-of-bounds write vulnerability. Successful exploitation could lead to arbitrary code execution .
Adobe Bridge versions 10.0.1 and earlier version have a heap overflow vulnerability. Successful exploitation could lead to arbitrary code execution.
Adobe Animate version 20.5 (and earlier) is affected by a stack overflow vulnerability, which could lead to arbitrary code execution in the context of the current user. Exploitation requires user interaction in that a victim must open a crafted .fla file in Animate.
Adobe After Effects versions 17.1 and earlier have a heap overflow vulnerability. Successful exploitation could lead to arbitrary code execution .
Adobe Bridge versions 10.0.1 and earlier version have an out-of-bounds write vulnerability. Successful exploitation could lead to arbitrary code execution .
Acrobat Reader DC version 21.007.20099 (and earlier), 20.004.30017 (and earlier) and 17.011.30204 (and earlier) are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Adobe Premiere Pro versions 14.2 and earlier have an out-of-bounds write vulnerability. Successful exploitation could lead to arbitrary code execution .
Adobe Premiere Rush versions 1.5.12 and earlier have an out-of-bounds write vulnerability. Successful exploitation could lead to arbitrary code execution .
Adobe Premiere Rush versions 1.5.12 and earlier have an out-of-bounds write vulnerability. Successful exploitation could lead to arbitrary code execution .
Adobe Bridge versions 10.0.1 and earlier version have an out-of-bounds write vulnerability. Successful exploitation could lead to arbitrary code execution .
Adobe Illustrator versions 24.0.2 and earlier have a memory corruption vulnerability. Successful exploitation could lead to arbitrary code execution.
Microsoft Internet Explorer 8 for Windows XP SP2 and SP3; 8 for Server 2003 SP2; 8 for Vista Gold, SP1, and SP2; and 8 for Server 2008 SP2 does not properly handle objects in memory, which allows remote attackers to execute arbitrary code via "malformed row property references" that trigger an access of an object that (1) was not properly initialized or (2) is deleted, leading to memory corruption, aka "HTML Objects Memory Corruption Vulnerability" or "HTML Object Memory Corruption Vulnerability."
Stack-based buffer overflow in Microsoft Office Word 2002 SP3, 2003 SP3, and 2007 SP1 and SP2; Microsoft Office for Mac 2004 and 2008; Open XML File Format Converter for Mac; Microsoft Office Word Viewer 2003 SP3; Microsoft Office Word Viewer; and Microsoft Office Compatibility Pack for Word, Excel, and PowerPoint 2007 File Formats SP1 and SP2 allows remote attackers to execute arbitrary code via a Word document with a crafted tag containing an invalid length field, aka "Word Buffer Overflow Vulnerability."
Adobe Dimension versions 3.4.3 (and earlier) is affected by a memory corruption vulnerability due to insecure handling of a malicious GIF file, potentially resulting in arbitrary code execution in the context of the current user. User interaction is required to exploit this vulnerability.
A remote code execution vulnerability exists in Microsoft Outlook when the software fails to properly handle objects in memory. An attacker who successfully exploited the vulnerability could run arbitrary code in the context of the current user. If the current user is logged on with administrative user rights, an attacker could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. Users whose accounts are configured to have fewer user rights on the system could be less impacted than users who operate with administrative user rights. Exploitation of the vulnerability requires that a user open a specially crafted file with an affected version of Microsoft Outlook software. In an email attack scenario, an attacker could exploit the vulnerability by sending the specially crafted file to the user and convincing the user to open the file. In a web-based attack scenario, an attacker could host a website (or leverage a compromised website that accepts or hosts user-provided content) that contains a specially crafted file designed to exploit the vulnerability. An attacker would have no way to force users to visit the website. Instead, an attacker would have to convince users to click a link, typically by way of an enticement in an email or instant message, and then convince them to open the specially crafted file. Note that where severity is indicated as Critical in the Affected Products table, the Preview Pane is an attack vector. The security update addresses the vulnerability by correcting how Outlook handles objects in memory.
A remote code execution vulnerability exists when the Windows font library improperly handles specially crafted embedded fonts. An attacker who successfully exploited the vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. Users whose accounts are configured to have fewer user rights on the system could be less impacted than users who operate with administrative user rights. There are multiple ways an attacker could exploit the vulnerability: In a web-based attack scenario, an attacker could host a specially crafted website that is designed to exploit the vulnerability and then convince users to view the website. An attacker would have no way to force users to view the attacker-controlled content. Instead, an attacker would have to convince users to take action, typically by getting them to click a link in an email or instant message that takes users to the attacker's website, or by opening an attachment sent through email. In a file-sharing attack scenario, an attacker could provide a specially crafted document file designed to exploit the vulnerability and then convince users to open the document file. The security update addresses the vulnerability by correcting how the Windows font library handles embedded fonts.
A remote code execution vulnerability exists when the Windows font library improperly handles specially crafted embedded fonts. An attacker who successfully exploited the vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. Users whose accounts are configured to have fewer user rights on the system could be less impacted than users who operate with administrative user rights. There are multiple ways an attacker could exploit the vulnerability: In a web-based attack scenario, an attacker could host a specially crafted website that is designed to exploit the vulnerability and then convince users to view the website. An attacker would have no way to force users to view the attacker-controlled content. Instead, an attacker would have to convince users to take action, typically by getting them to click a link in an email or instant message that takes users to the attacker's website, or by opening an attachment sent through email. In a file-sharing attack scenario, an attacker could provide a specially crafted document file designed to exploit the vulnerability and then convince users to open the document file. The security update addresses the vulnerability by correcting how the Windows font library handles embedded fonts.
A remote code execution vulnerability exists in the way that the VBScript engine handles objects in memory, aka 'Windows VBScript Engine Remote Code Execution Vulnerability'. This CVE ID is unique from CVE-2019-0665, CVE-2019-0666, CVE-2019-0667.
A remote code execution vulnerability exists in the way that comctl32.dll handles objects in memory, aka 'Comctl32 Remote Code Execution Vulnerability'.
A remote code execution vulnerability exists in the way that the VBScript engine handles objects in memory, aka 'Windows VBScript Engine Remote Code Execution Vulnerability'.
A remote code execution vulnerability exists when the Windows font library improperly handles specially crafted embedded fonts, aka 'Win32k Graphics Remote Code Execution Vulnerability'.