Storage Spaces Direct Elevation of Privilege Vulnerability
Windows Work Folder Service Elevation of Privilege Vulnerability
NVIDIA GeForce Experience contains a vulnerability in user authorization, where GameStream does not correctly apply individual user access controls for users on the same device, which, with user intervention, may lead to escalation of privileges, information disclosure, data tampering, and denial of service, affecting other resources beyond the intended security authority of GameStream.
An elevation of privilege vulnerability exists due to a race condition in Windows Subsystem for Linux, aka 'Windows Subsystem for Linux Elevation of Privilege Vulnerability'.
Storage Spaces Direct Elevation of Privilege Vulnerability
Dell EMC SupportAssist Enterprise version 1.1 creates a local Windows user account named "OMEAdapterUser" with a default password as part of the installation process. This unnecessary user account also remains even after an upgrade from v1.1 to v1.2. Access to the management console can be achieved by someone with knowledge of the default password. If SupportAssist Enterprise is installed on a server running OpenManage Essentials (OME), the OmeAdapterUser user account is added as a member of the OmeAdministrators group for the OME. An unauthorized person with knowledge of the default password and access to the OME web console could potentially use this account to gain access to the affected installation of OME with OmeAdministrators privileges. This is fixed in version 1.2.1.
A vulnerability in the London Trust Media Private Internet Access (PIA) VPN Client 1.0.2 (build 02363) for Windows could allow an authenticated, local attacker to run arbitrary code with elevated privileges. On startup, the PIA Windows service (pia-service.exe) loads the OpenSSL library from %PROGRAMFILES%\Private Internet Access\libeay32.dll. This library attempts to load the C:\etc\ssl\openssl.cnf configuration file which does not exist. By default on Windows systems, authenticated users can create directories under C:\. A low privileged user can create a C:\etc\ssl\openssl.cnf configuration file to load a malicious OpenSSL engine library resulting in arbitrary code execution as SYSTEM when the service starts.
An issue was discovered in Avira Free Security Suite 10. The permissive access rights on the SoftwareUpdater folder (files / folders and configuration) are incompatible with the privileged file manipulation performed by the product. Files can be created that can be used by an unprivileged user to obtain SYSTEM privileges. Arbitrary file creation can be achieved by abusing the SwuConfig.json file creation: an unprivileged user can replace these files by pseudo-symbolic links to arbitrary files. When an update occurs, a privileged service creates a file and sets its access rights, offering write access to the Everyone group in any directory.
Windows File Explorer Elevation of Privilege Vulnerability
An elevation of privilege exists in Windows Audio Service, aka 'Windows Audio Service Elevation of Privilege Vulnerability'. This CVE ID is unique from CVE-2019-1086, CVE-2019-1087.
An elevation of privilege vulnerability exists in Windows when the Win32k component fails to properly handle objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. To exploit this vulnerability, an attacker would first have to log on to the system. An attacker could then run a specially crafted application that could exploit the vulnerability and take control of an affected system. The update addresses this vulnerability by correcting how Win32k handles objects in memory.
An elevation of privilege exists in Windows Audio Service. An attacker who successfully exploited the vulnerability could run arbitrary code with elevated privileges. To exploit the vulnerability, an attacker could run a specially crafted application that could exploit the vulnerability. This vulnerability by itself does not allow arbitrary code to be run. However, this vulnerability could be used in conjunction with one or more vulnerabilities (e.g. a remote code execution vulnerability and another elevation of privilege) that could take advantage of the elevated privileges when running. The update addresses the vulnerability by correcting how the Windows Audio Service handles processes these requests.
An elevation of privilege exists in Windows Audio Service. An attacker who successfully exploited the vulnerability could run arbitrary code with elevated privileges. To exploit the vulnerability, an attacker could run a specially crafted application that could exploit the vulnerability. This vulnerability by itself does not allow arbitrary code to be run. However, this vulnerability could be used in conjunction with one or more vulnerabilities (e.g. a remote code execution vulnerability and another elevation of privilege) that could take advantage of the elevated privileges when running. The update addresses the vulnerability by correcting how the Windows Audio Service handles processes these requests.
Postgresql Windows installer before versions 11.5, 10.10, 9.6.15, 9.5.19, 9.4.24 is vulnerable via bundled OpenSSL executing code from unprotected directory.
An elevation of privilege exists in Windows Audio Service, aka 'Windows Audio Service Elevation of Privilege Vulnerability'. This CVE ID is unique from CVE-2019-1086, CVE-2019-1088.
An elevation of privilege vulnerability exists when Windows improperly handles objects in memory and incorrectly maps kernel memory, aka "Microsoft DirectX Graphics Kernel Subsystem Elevation of Privilege Vulnerability." This affects Windows Server 2012 R2, Windows RT 8.1, Windows Server 2012, Windows Server 2016, Windows 8.1, Windows 10, Windows 10 Servers.
An elevation of privilege vulnerability exists in Windows when the Win32k component fails to properly handle objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. To exploit this vulnerability, an attacker would first have to log on to the system. An attacker could then run a specially crafted application that could exploit the vulnerability and take control of an affected system. The update addresses this vulnerability by correcting how Win32k handles objects in memory.
A security feature bypass vulnerability exists in .Net Framework which could allow an attacker to bypass Device Guard, aka ".NET Framework Device Guard Security Feature Bypass Vulnerability." This affects Microsoft .NET Framework 4.7.1, Microsoft .NET Framework 4.6, Microsoft .NET Framework 3.5, Microsoft .NET Framework 4.7/4.7.1, Microsoft .NET Framework 3.0, Microsoft .NET Framework 3.5.1, Microsoft .NET Framework 4.5.2, Microsoft .NET Framework 4.6.2/4.7/4.7.1, Microsoft .NET Framework 4.6/4.6.1/4.6.2/4.7/4.7.1, Microsoft .NET Framework 2.0, Microsoft .NET Framework 4.6/4.6.1/4.6.2.
An elevation of privilege vulnerability exists when DirectX improperly handles objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. To exploit this vulnerability, an attacker would first have to log on to the system. An attacker could then run a specially crafted application that could exploit the vulnerability and take control of an affected system. The update addresses the vulnerability by correcting how DirectX handles objects in memory.
In Python before 3.10.3 on Windows, local users can gain privileges because the search path is inadequately secured. The installer may allow a local attacker to add user-writable directories to the system search path. To exploit, an administrator must have installed Python for all users and enabled PATH entries. A non-administrative user can trigger a repair that incorrectly adds user-writable paths into PATH, enabling search-path hijacking of other users and system services. This affects Python (CPython) through 3.7.12, 3.8.x through 3.8.12, 3.9.x through 3.9.10, and 3.10.x through 3.10.2.
An elevation of privilege exists in Windows Audio Service. An attacker who successfully exploited the vulnerability could run arbitrary code with elevated privileges. To exploit the vulnerability, an attacker could run a specially crafted application that could exploit the vulnerability. This vulnerability by itself does not allow arbitrary code to be run. However, this vulnerability could be used in conjunction with one or more vulnerabilities (e.g. a remote code execution vulnerability and another elevation of privilege) that could take advantage of the elevated privileges when running. The update addresses the vulnerability by correcting how the Windows Audio Service handles processes these requests.
An elevation of privilege vulnerability exists when the Diagnostics Hub Standard Collector or the Visual Studio Standard Collector allows file deletion in arbitrary locations.To exploit the vulnerability, an attacker would first have to log on to the system, aka 'Diagnostic Hub Standard Collector, Visual Studio Standard Collector Elevation of Privilege Vulnerability'.
An elevation of privilege exists in Windows Audio Service. An attacker who successfully exploited the vulnerability could run arbitrary code with elevated privileges. To exploit the vulnerability, an attacker could run a specially crafted application that could exploit the vulnerability. This vulnerability by itself does not allow arbitrary code to be run. However, this vulnerability could be used in conjunction with one or more vulnerabilities (e.g. a remote code execution vulnerability and another elevation of privilege) that could take advantage of the elevated privileges when running. The update addresses the vulnerability by correcting how the Windows Audio Service handles processes these requests.
A remote code execution vulnerability exists when the Windows Jet Database Engine improperly handles objects in memory, aka 'Jet Database Engine Remote Code Execution Vulnerability'. This CVE ID is unique from CVE-2019-0846, CVE-2019-0847, CVE-2019-0851, CVE-2019-0877.
An elevation of privilege vulnerability exists in the Windows Installer when the Windows Installer fails to properly sanitize input leading to an insecure library loading behavior. A locally authenticated attacker could run arbitrary code with elevated system privileges. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. The security update addresses the vulnerability by correcting the input sanitization error to preclude unintended elevation.
An elevation of privilege vulnerability exists in Windows when the Win32k component fails to properly handle objects in memory, aka 'Win32k Elevation of Privilege Vulnerability'.
A security feature bypass vulnerability exists in Windows which could allow an attacker to bypass Device Guard when Windows improperly handles calls to the LUAFV driver (luafv.sys), aka 'Windows Security Feature Bypass Vulnerability'.
The Windows kernel in Windows 7 SP1 and Windows Server 2008 R2 SP1 allows an elevation of privilege vulnerability due to the way it handles objects in memory, aka "Windows Kernel Elevation of Privilege Vulnerability."
An elevation of privilege vulnerability exists when Windows improperly handles calls to the LUAFV driver (luafv.sys), aka 'Windows Elevation of Privilege Vulnerability'. This CVE ID is unique from CVE-2019-0730, CVE-2019-0731, CVE-2019-0796, CVE-2019-0805, CVE-2019-0841.
A security feature bypass vulnerability exists in Windows which could allow an attacker to bypass Device Guard, aka 'Windows Security Feature Bypass Vulnerability'. This CVE ID is unique from CVE-2019-0631, CVE-2019-0632.
An elevation of privilege vulnerability exists in Windows AppX Deployment Server that allows file creation in arbitrary locations. To exploit the vulnerability, an attacker would first have to log on to the system, aka 'Microsoft Windows Elevation of Privilege Vulnerability'.
A security feature bypass vulnerability exists in Windows which could allow an attacker to bypass Device Guard, aka 'Windows Security Feature Bypass Vulnerability'. This CVE ID is unique from CVE-2019-0627, CVE-2019-0632.
A Missing Impersonation Privilege Escalation vulnerability in Trend Micro Security 2018 (Consumer) products could allow a local attacker to escalate privileges on vulnerable installations. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit the vulnerability.
An elevation of privilege vulnerability exists in Microsoft Windows when Windows fails to properly handle certain symbolic links, aka 'Windows Elevation of Privilege Vulnerability'. This CVE ID is unique from CVE-2019-0734.
An elevation of privilege vulnerability exists when the Windows kernel fails to properly handle objects in memory, aka 'Windows Kernel Elevation of Privilege Vulnerability'.
An elevation of privilege vulnerability exists when Windows improperly handles calls to the LUAFV driver (luafv.sys), aka 'Windows Elevation of Privilege Vulnerability'. This CVE ID is unique from CVE-2019-0730, CVE-2019-0796, CVE-2019-0805, CVE-2019-0836, CVE-2019-0841.
An elevation of privilege vulnerability exists due to an integer overflow in Windows Subsystem for Linux, aka 'Windows Subsystem for Linux Elevation of Privilege Vulnerability'. This CVE ID is unique from CVE-2019-0682, CVE-2019-0689, CVE-2019-0692, CVE-2019-0693.
The Named Pipe File System in Windows 10 version 1709 and Windows Server, version 1709 allows an elevation of privilege vulnerability due to the way the Named Pipe File System handles objects, aka "Named Pipe File System Elevation of Privilege Vulnerability".
The Windows Common Log File System (CLFS) driver in Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2008 SP2 and R2 SP1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an elevation of privilege vulnerability due to how objects in memory are handled, aka "Windows Common Log File System Driver Elevation Of Privilege Vulnerability". This CVE is unique from CVE-2018-0846.
Windows Scripting Host (WSH) in Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows a security feature bypass vulnerability due to how objects are handled in memory, aka "Windows Security Feature Bypass Vulnerability". This CVE is unique from CVE-2018-0902.
An Elevation of Privilege vulnerability exists when Diagnostics Hub Standard Collector allows file creation in arbitrary locations, aka "Diagnostic Hub Standard Collector Elevation Of Privilege Vulnerability." This affects Windows Server 2016, Windows 10, Microsoft Visual Studio, Windows 10 Servers.
NTFS in Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an elevation of privilege vulnerability due to the way NTFS handles objects, aka "Windows NTFS Global Reparse Point Elevation of Privilege Vulnerability".
An elevation of privilege vulnerability exists when Windows improperly handles calls to Advanced Local Procedure Call (ALPC). An attacker who successfully exploited this vulnerability could run arbitrary code in the security context of the local system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. To exploit this vulnerability, an attacker would first have to log on to the system. An attacker could then run a specially crafted application that could exploit the vulnerability and take control over an affected system. The update addresses the vulnerability by correcting how Windows handles calls to ALPC.
An elevation of privilege vulnerability exists when the Windows Common Log File System (CLFS) driver improperly handles objects in memory. An attacker who successfully exploited this vulnerability could run processes in an elevated context. To exploit the vulnerability, an attacker would first have to log on to the system, and then run a specially crafted application to take control over the affected system. The security update addresses the vulnerability by correcting how CLFS handles objects in memory.
The Microsoft Server Message Block (SMB) Server in Windows 7 SP1, Windows 8.1 and RT 8.1, Windows Server 2008 SP2 and R2 SP1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an elevation of privilege vulnerability due to the way SMB Server handles specially crafted files, aka "Windows Elevation of Privilege Vulnerability".
The Windows kernel in Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an elevation of privilege vulnerability due to the way objects are handled in memory, aka "Windows Kernel Elevation of Privilege Vulnerability". This CVE is unique from CVE-2018-0742, CVE-2018-0809, CVE-2018-0820 and CVE-2018-0843.
A vulnerability in the Cisco Umbrella Enterprise Roaming Client (ERC) could allow an authenticated, local attacker to elevate privileges to Administrator. To exploit the vulnerability, the attacker must authenticate with valid local user credentials. This vulnerability is due to improper implementation of file system permissions, which could allow non-administrative users to place files within restricted directories. An attacker could exploit this vulnerability by placing an executable file within the restricted directory, which when executed by the ERC client, would run with Administrator privileges.
AppContainer in Windows 10 Gold, 1511, 1607, 1703 and 1709, Windows Server 2016 and Windows Server, version 1709 allows an elevation of privilege vulnerability due to the way constrained impersonations are handled, aka "Windows AppContainer Elevation Of Privilege Vulnerability".
The Desktop Bridge Virtual File System (VFS) in Windows 10 1607, 1703, and 1709, Windows Server 2016 and Windows Server, version 1709 allows an elevation of privilege vulnerability due to how file paths are managed, aka "Windows Desktop Bridge VFS Elevation of Privilege Vulnerability".
An elevation of privilege vulnerability exists in the way that the Windows Kernel handles objects in memory, aka "Windows Kernel Elevation of Privilege Vulnerability." This affects Windows Server 2016, Windows 10, Windows 10 Servers.