Microsoft Edge in Microsoft Windows 10 1511, 1607, 1703, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user due to the way that Microsoft browser JavaScript engines render content when handling objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8634, CVE-2017-8635, CVE-2017-8636, CVE-2017-8638, CVE-2017-8639, CVE-2017-8640, CVE-2017-8641, CVE-2017-8645, CVE-2017-8646, CVE-2017-8647, CVE-2017-8655, CVE-2017-8656, CVE-2017-8657, CVE-2017-8670, CVE-2017-8671, and CVE-2017-8674.
Microsoft Edge in Microsoft Windows 10 1607, 1703, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user due to the way that Microsoft browser JavaScript engines render content when handling objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8634, CVE-2017-8635, CVE-2017-8636, CVE-2017-8638, CVE-2017-8639, CVE-2017-8640, CVE-2017-8641, CVE-2017-8645, CVE-2017-8646, CVE-2017-8647, CVE-2017-8655, CVE-2017-8657, CVE-2017-8670, CVE-2017-8671, CVE-2017-8672, and CVE-2017-8674.
Internet Explorer in Microsoft Windows 7 SP1, Windows Server 2008 R2 SP1, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user, due to the way that Internet Explorer accesses objects in memory, aka "Internet Explorer Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8749.
Microsoft Edge in Microsoft Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allow an attacker to execute arbitrary code in the context of the current user when the JavaScript engine fails to render when handling objects in memory in Microsoft Edge, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8596, CVE-2017-8610, CVE-2017-8618, CVE-2017-8619, CVE-2017-8595, CVE-2017-8601, CVE-2017-8603, CVE-2017-8604, CVE-2017-8605, CVE-2017-8606, CVE-2017-8607, CVE-2017-8608, and CVE-2017-8609.
Internet Explorer in Microsoft Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user, due to the way that Internet Explorer accesses objects in memory, aka "Internet Explorer Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8747.
Microsoft Edge in Microsoft Windows 10 1703 allows an attacker to execute arbitrary code in the context of the current user due to the way that Microsoft browser JavaScript engines render content when handling objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8634, CVE-2017-8635, CVE-2017-8636, CVE-2017-8639, CVE-2017-8640, CVE-2017-8641, CVE-2017-8645, CVE-2017-8646, CVE-2017-8647, CVE-2017-8655, CVE-2017-8656, CVE-2017-8657, CVE-2017-8670, CVE-2017-8671, CVE-2017-8672, and CVE-2017-8674.
Microsoft Edge in Microsoft Windows 10 1703 allows an attacker to execute arbitrary code in the context of the current user due to the way that Microsoft browser JavaScript engines render content when handling objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8634, CVE-2017-8635, CVE-2017-8636, CVE-2017-8638, CVE-2017-8639, CVE-2017-8640, CVE-2017-8641, CVE-2017-8645, CVE-2017-8646, CVE-2017-8647, CVE-2017-8655, CVE-2017-8656, CVE-2017-8657, CVE-2017-8670, CVE-2017-8671, and CVE-2017-8672.
Microsoft Edge in Windows 10 1703 allows an attacker to execute arbitrary code in the context of the current user when the Edge JavaScript scripting engine fails to handle objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8499, CVE-2017-8520, CVE-2017-8548, and CVE-2017-8549.
Microsoft Edge in Windows 10 1703 allows an attacker to execute arbitrary code in the context of the current user when the Edge JavaScript scripting engine fails to handle objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8520, CVE-2017-8521, CVE-2017-8548, and CVE-2017-8549.
Microsoft Edge in Windows 10 1607 and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user when Microsoft Edge improperly accesses objects in memory, aka "Microsoft Edge Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8497.
Microsoft Edge allows a remote code execution vulnerability due to the way it accesses objects in memory, aka "Scripting Engine Memory Corruption Vulnerability".
Microsoft browsers in Microsoft Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allow an allow an attacker to execute arbitrary code in the context of the current user when the JavaScript engines fail to render when handling objects in memory in Microsoft browsers, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8517 and CVE-2017-8524.
Microsoft browsers in Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allow an allow an attacker to execute arbitrary code in the context of the current user when the JavaScript engines fail to render when handling objects in memory in Microsoft browsers, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8522 and CVE-2017-8524.
Microsoft Edge in Windows 10 1607 and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user when Microsoft Edge improperly accesses objects in memory, aka "Microsoft Edge Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8496.
Buffer overflow in Windows Shell (used as the Windows Desktop) allows local and possibly remote attackers to execute arbitrary code via a custom URL handler that has not been removed for an application that has been improperly uninstalled.
Buffer overflow in Internet Explorer 5 allows remote attackers to execute commands via a malformed Favorites icon.
Internet Explorer 6, Internet Explorer 7, Internet Explorer 8, Internet Explorer 9, Internet Explorer 10, and Internet Explorer 11 allows remote attackers to execute arbitrary code.
Microsoft Internet Explorer 11 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Internet Explorer Memory Corruption Vulnerability," a different vulnerability than CVE-2014-2810, CVE-2014-2811, CVE-2014-2822, CVE-2014-2823, CVE-2014-4057, and CVE-2014-8985.
Microsoft Internet Explorer 11 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Internet Explorer Memory Corruption Vulnerability," a different vulnerability than CVE-2014-2787, CVE-2014-2790, CVE-2014-2802, and CVE-2014-2806.
Microsoft Internet Explorer 11 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Internet Explorer Memory Corruption Vulnerability," a different vulnerability than CVE-2014-0304.
Internet Explorer in Microsoft Windows 7 SP1, Windows Server 2008 and R2 SP1, Windows 8.1 and Windows RT 8.1, and Windows Server 2012 and R2 allow an attacker to execute arbitrary code in the context of the current user when Internet Explorer improperly accesses objects in memory, aka "Internet Explorer Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-8547.
Microsoft Internet Explorer 11 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "Internet Explorer Memory Corruption Vulnerability," a different vulnerability than CVE-2014-2810, CVE-2014-2811, CVE-2014-2822, CVE-2014-2823, CVE-2014-4057, and CVE-2014-4145.
ChakraCore and Microsoft Edge in Windows 10 1703 allows an attacker to execute arbitrary code in the context of the current user, due to how the scripting engine handles objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-11792, CVE-2017-11793, CVE-2017-11797, CVE-2017-11798, CVE-2017-11799, CVE-2017-11800, CVE-2017-11801, CVE-2017-11802, CVE-2017-11804, CVE-2017-11805, CVE-2017-11806, CVE-2017-11807, CVE-2017-11808, CVE-2017-11809, CVE-2017-11810, CVE-2017-11811, CVE-2017-11812, and CVE-2017-11821.
ChakraCore and Microsoft Edge in Windows 10 1703, 1709, and Windows Server, version 1709 allows an attacker to gain the same user rights as the current user, due to how the scripting engine handles objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-11836, CVE-2017-11837, CVE-2017-11838, CVE-2017-11839, CVE-2017-11840, CVE-2017-11841, CVE-2017-11843, CVE-2017-11846, CVE-2017-11858, CVE-2017-11859, CVE-2017-11861, CVE-2017-11862, CVE-2017-11866, CVE-2017-11869, CVE-2017-11871, and CVE-2017-11873.
ChakraCore and Windows 10 Gold, 1511, 1607, 1703, 1709, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user, due to how the scripting engine handles objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-11886, CVE-2017-11889, CVE-2017-11890, CVE-2017-11893, CVE-2017-11894, CVE-2017-11895, CVE-2017-11901, CVE-2017-11903, CVE-2017-11905, CVE-2017-11905, CVE-2017-11907, CVE-2017-11908, CVE-2017-11909, CVE-2017-11911, CVE-2017-11912, CVE-2017-11913, CVE-2017-11914, CVE-2017-11916, CVE-2017-11918, and CVE-2017-11930.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
WebKit, as used in Apple iTunes before 10.5, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-10-11-1.
Microsoft Windows 7 SP1 allows an attacker to execute arbitrary code in the context of the current user, due to how Microsoft browsers handle objects in memory, aka "Windows Shell Remote Code Execution Vulnerability".
An remote code execution vulnerability exists when Microsoft Edge PDF Reader improperly handles objects in memory, aka "Microsoft Edge PDF Remote Code Execution Vulnerability." This affects Microsoft Edge.
WebKit, as used in Apple iTunes before 10.2 on Windows, does not properly access glyph data during layout actions for floating blocks associated with pseudo-elements, which allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
The DOM level 2 implementation in WebKit, as used in Apple iTunes before 10.2 on Windows and Apple Safari, does not properly handle DOM manipulations associated with event listeners during processing of range objects, which allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.
CoreFoundation, as used in Apple iTunes before 10.5, does not properly perform string tokenization, which allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via unspecified vectors.
WebKit, as used in Apple iTunes before 10.2 on Windows, allows man-in-the-middle attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via vectors related to iTunes Store browsing, a different vulnerability than other CVEs listed in APPLE-SA-2011-03-02-1.