In FreeBSD 12.1-STABLE before r359565, 12.1-RELEASE before p7, 11.4-STABLE before r362975, 11.4-RELEASE before p1, and 11.3-RELEASE before p11, missing synchronization in the IPV6_2292PKTOPTIONS socket option set handler contained a race condition allowing a malicious application to modify memory after being freed, possibly resulting in code execution.
Multiple buffer overflows in the (1) heap_add_entry and (2) relocate_dir functions in archive_read_support_format_iso9660.c in libarchive through 2.8.5 allow remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a crafted ISO9660 image.
Buffer overflow in libarchive through 2.8.5 allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a crafted TAR archive.
A certain pseudo-random number generator (PRNG) algorithm that uses ADD with 0 random hops (aka "Algorithm A0"), as used in OpenBSD 3.5 through 4.2 and NetBSD 1.6.2 through 4.0, allows remote attackers to guess sensitive values such as (1) DNS transaction IDs or (2) IP fragmentation IDs by observing a sequence of previously generated values. NOTE: this issue can be leveraged for attacks such as DNS cache poisoning, injection into TCP packets, and OS fingerprinting.
Array index error in the (1) dtoa implementation in dtoa.c (aka pdtoa.c) and the (2) gdtoa (aka new dtoa) implementation in gdtoa/misc.c in libc, as used in multiple operating systems and products including in FreeBSD 6.4 and 7.2, NetBSD 5.0, OpenBSD 4.5, Mozilla Firefox 3.0.x before 3.0.15 and 3.5.x before 3.5.4, K-Meleon 1.5.3, SeaMonkey 1.1.8, and other products, allows context-dependent attackers to cause a denial of service (application crash) and possibly execute arbitrary code via a large precision value in the format argument to a printf function, which triggers incorrect memory allocation and a heap-based buffer overflow during conversion to a floating-point number.
Heimdal before 7.4 allows remote attackers to impersonate services with Orpheus' Lyre attacks because it obtains service-principal names in a way that violates the Kerberos 5 protocol specification. In _krb5_extract_ticket() the KDC-REP service name must be obtained from the encrypted version stored in 'enc_part' instead of the unencrypted version stored in 'ticket'. Use of the unencrypted version provides an opportunity for successful server impersonation and other attacks. NOTE: this CVE is only for Heimdal and other products that embed Heimdal code; it does not apply to other instances in which this part of the Kerberos 5 protocol specification is violated.
Integer overflow in the _gd2GetHeader function in gd_gd2.c in the GD Graphics Library (aka libgd) before 2.2.3, as used in PHP before 5.5.37, 5.6.x before 5.6.23, and 7.x before 7.0.8, allows remote attackers to cause a denial of service (heap-based buffer overflow and application crash) or possibly have unspecified other impact via crafted chunk dimensions in an image.
A certain pseudo-random number generator (PRNG) algorithm that uses XOR and 2-bit random hops (aka "Algorithm X2"), as used in OpenBSD 2.6 through 3.4, Mac OS X 10 through 10.5.1, FreeBSD 4.4 through 7.0, and DragonFlyBSD 1.0 through 1.10.1, allows remote attackers to guess sensitive values such as IP fragmentation IDs by observing a sequence of previously generated values. NOTE: this issue can be leveraged for attacks such as injection into TCP packets and OS fingerprinting.
Integer overflow in print-bgp.c in the BGP dissector in tcpdump 3.9.6 and earlier allows remote attackers to execute arbitrary code via crafted TLVs in a BGP packet, related to an unchecked return value.
A certain pseudo-random number generator (PRNG) algorithm that uses XOR and 3-bit random hops (aka "Algorithm X3"), as used in OpenBSD 2.8 through 4.2, allows remote attackers to guess sensitive values such as DNS transaction IDs by observing a sequence of previously generated values. NOTE: this issue can be leveraged for attacks such as DNS cache poisoning against OpenBSD's modification of BIND.
The implementations of EAP-PWD in hostapd EAP Server, when built against a crypto library missing explicit validation on imported elements, do not validate the scalar and element values in EAP-pwd-Commit. An attacker may be able to use invalid scalar/element values to complete authentication, gaining session key and network access without needing or learning the password. Both hostapd with SAE support and wpa_supplicant with SAE support prior to and including version 2.4 are affected. Both hostapd with EAP-pwd support and wpa_supplicant with EAP-pwd support prior to and including version 2.7 are affected.
The implementations of EAP-PWD in wpa_supplicant EAP Peer, when built against a crypto library missing explicit validation on imported elements, do not validate the scalar and element values in EAP-pwd-Commit. An attacker may complete authentication, session key and control of the data connection with a client. Both hostapd with SAE support and wpa_supplicant with SAE support prior to and including version 2.4 are affected. Both hostapd with EAP-pwd support and wpa_supplicant with EAP-pwd support prior to and including version 2.7 are affected.
In FreeBSD 12.0-STABLE before r350648, 12.0-RELEASE before 12.0-RELEASE-p9, 11.3-STABLE before r350650, 11.3-RELEASE before 11.3-RELEASE-p2, and 11.2-RELEASE before 11.2-RELEASE-p13, the ICMPv6 input path incorrectly handles cases where an MLDv2 listener query packet is internally fragmented across multiple mbufs. A remote attacker may be able to cause an out-of-bounds read or write that may cause the kernel to attempt to access an unmapped page and subsequently panic.
In FreeBSD 12.0-STABLE before r351264, 12.0-RELEASE before 12.0-RELEASE-p10, 11.3-STABLE before r351265, 11.3-RELEASE before 11.3-RELEASE-p3, and 11.2-RELEASE before 11.2-RELEASE-p14, the kernel driver for /dev/midistat implements a read handler that is not thread-safe. A multi-threaded program can exploit races in the handler to copy out kernel memory outside the boundaries of midistat's data buffer.
In FreeBSD 12.0-STABLE before r350246, 12.0-RELEASE before 12.0-RELEASE-p8, 11.3-STABLE before r350247, 11.3-RELEASE before 11.3-RELEASE-p1, and 11.2-RELEASE before 11.2-RELEASE-p12, the emulated XHCI device included with the bhyve hypervisor did not properly validate data provided by the guest, allowing an out-of-bounds read. This provides a malicious guest the possibility to crash the system or access system memory.
The ctl_request_sense function could expose up to three bytes of the kernel heap to userspace. Malicious software running in a guest VM that exposes virtio_scsi can exploit the vulnerabilities to achieve code execution on the host in the bhyve userspace process, which typically runs as root. Note that bhyve runs in a Capsicum sandbox, so malicious code is constrained by the capabilities available to the bhyve process. A malicious iSCSI initiator could achieve remote code execution on the iSCSI target host.
An insufficient boundary validation in the USB code could lead to an out-of-bounds read on the heap, which could potentially lead to an arbitrary write and remote code execution.
FreeBSD's crontab calculates the MD5 sum of the previous and new cronjob to determine if any changes have been made before copying the new version in. In particular, it uses the MD5File() function, which takes a pathname as an argument, and is called with euid 0. A race condition in this process may lead to an arbitrary MD5 comparison regardless of the read permissions.
The SSL/TLS handshaking code in OpenSSL 0.9.7a, 0.9.7b, and 0.9.7c, when using Kerberos ciphersuites, does not properly check the length of Kerberos tickets during a handshake, which allows remote attackers to cause a denial of service (crash) via a crafted SSL/TLS handshake that causes an out-of-bounds read.
Local user gains root privileges via buffer overflow in rdist, via expstr() function.
Race condition in the Pipe (IPC) close function in FreeBSD 6.3 and 6.4 allows local users to cause a denial of service (crash) or gain privileges via vectors related to kqueues, which triggers a use after free, leading to a NULL pointer dereference or memory corruption.
In FreeBSD 12.0-STABLE before r350637, 12.0-RELEASE before 12.0-RELEASE-p9, 11.3-STABLE before r350638, 11.3-RELEASE before 11.3-RELEASE-p2, and 11.2-RELEASE before 11.2-RELEASE-p13, the bsnmp library is not properly validating the submitted length from a type-length-value encoding. A remote user could cause an out-of-bounds read or trigger a crash of the software such as bsnmpd resulting in a denial of service.
In FreeBSD 12.1-STABLE before r356908, 12.1-RELEASE before p5, 11.3-STABLE before r356908, and 11.3-RELEASE before p9, a race condition in the cryptodev module permitted a data structure in the kernel to be used after it was freed, allowing an unprivileged process can overwrite arbitrary kernel memory.
The MATCH_ASSOC function in NTP before version 4.2.8p9 and 4.3.x before 4.3.92 allows remote attackers to cause an out-of-bounds reference via an addpeer request with a large hmode value.
When dumping core and saving process information, proc_getargv() might return an sbuf which have a sbuf_len() of 0 or -1, which is not properly handled. An out-of-bound read can happen when user constructs a specially crafted ps_string, which in turn can cause the kernel to crash.
The NVMe driver function nvme_opc_get_log_page is vulnerable to a buffer over-read from a guest-controlled value.
A statement in the System Programming Guide of the Intel 64 and IA-32 Architectures Software Developer's Manual (SDM) was mishandled in the development of some or all operating-system kernels, resulting in unexpected behavior for #DB exceptions that are deferred by MOV SS or POP SS, as demonstrated by (for example) privilege escalation in Windows, macOS, some Xen configurations, or FreeBSD, or a Linux kernel crash. The MOV to SS and POP SS instructions inhibit interrupts (including NMIs), data breakpoints, and single step trap exceptions until the instruction boundary following the next instruction (SDM Vol. 3A; section 6.8.3). (The inhibited data breakpoints are those on memory accessed by the MOV to SS or POP to SS instruction itself.) Note that debug exceptions are not inhibited by the interrupt enable (EFLAGS.IF) system flag (SDM Vol. 3A; section 2.3). If the instruction following the MOV to SS or POP to SS instruction is an instruction like SYSCALL, SYSENTER, INT 3, etc. that transfers control to the operating system at CPL < 3, the debug exception is delivered after the transfer to CPL < 3 is complete. OS kernels may not expect this order of events and may therefore experience unexpected behavior when it occurs.
In FreeBSD 12.2-STABLE before r369334, 11.4-STABLE before r369335, 12.2-RELEASE before p4 and 11.4-RELEASE before p8 when a process, such as jexec(8) or killall(1), calls jail_attach(2) to enter a jail, the jailed root can attach to it using ptrace(2) before the current working directory is changed.
In FreeBSD 12.2-STABLE before r369312, 11.4-STABLE before r369313, 12.2-RELEASE before p4 and 11.4-RELEASE before p8 due to a race condition in the jail_remove(2) implementation, it may fail to kill some of the processes.
In FreeBSD 13.0-STABLE before n245118, 12.2-STABLE before r369552, 11.4-STABLE before r369560, 13.0-RC5 before p1, 12.2-RELEASE before p6, and 11.4-RELEASE before p9, a superuser inside a FreeBSD jail configured with the non-default allow.mount permission could cause a race condition between the lookup of ".." and remounting a filesystem, allowing access to filesystem hierarchy outside of the jail.
A security regression (CVE-2006-5051) was discovered in OpenSSH's server (sshd). There is a race condition which can lead sshd to handle some signals in an unsafe manner. An unauthenticated, remote attacker may be able to trigger it by failing to authenticate within a set time period.
A signal handler in sshd(8) may call a logging function that is not async-signal-safe. The signal handler is invoked when a client does not authenticate within the LoginGraceTime seconds (120 by default). This signal handler executes in the context of the sshd(8)'s privileged code, which is not sandboxed and runs with full root privileges. This issue is another instance of the problem in CVE-2024-6387 addressed by FreeBSD-SA-24:04.openssh. The faulty code in this case is from the integration of blacklistd in OpenSSH in FreeBSD. As a result of calling functions that are not async-signal-safe in the privileged sshd(8) context, a race condition exists that a determined attacker may be able to exploit to allow an unauthenticated remote code execution as root.
The hda driver is vulnerable to a buffer over-read from a guest-controlled value.
libfetch before 2021-07-26, as used in apk-tools, xbps, and other products, mishandles numeric strings for the FTP and HTTP protocols. The FTP passive mode implementation allows an out-of-bounds read because strtol is used to parse the relevant numbers into address bytes. It does not check if the line ends prematurely. If it does, the for-loop condition checks for the '\0' terminator one byte too late.
Malicious software running in a guest VM can exploit the buffer overflow to achieve code execution on the host in the bhyve userspace process, which typically runs as root. Note that bhyve runs in a Capsicum sandbox, so malicious code is constrained by the capabilities available to the bhyve process.
This vulnerability allows remote attackers to execute arbitrary code on vulnerable installations of Foxit PhantomPDF 9.4.1.16828. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the conversion of HTML files to PDF. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-8170.
Foxit Reader before 8.2.1 and PhantomPDF before 8.2.1 have an out-of-bounds read that allows remote attackers to obtain sensitive information or possibly execute arbitrary code via a crafted font in a PDF document.
The PoDoFo::PdfXRefStreamParserObject::ReadXRefStreamEntry function in base/PdfXRefStreamParserObject.cpp:224 in PoDoFo 0.9.5 allows remote attackers to cause a denial of service (heap-based buffer over-read) or possibly have unspecified other impact via a crafted PDF file.
An out-of-bounds read vulnerability exists when reading a TGA file using Open Design Alliance Drawings SDK before 2022.12. The specific issue exists after loading TGA files. An unchecked input data from a crafted TGA file leads to an out-of-bounds read. An attacker can leverage this vulnerability to execute code in the context of the current process.
Foxit Reader before 8.2.1 and PhantomPDF before 8.2.1 have an out-of-bounds read that allows remote attackers to obtain sensitive information or possibly execute arbitrary code via a crafted font in a PDF document.
Adobe InCopy version 16.4 (and earlier) is affected by an out-of-bounds read vulnerability when parsing a crafted file, which could result in a read past the end of an allocated memory structure. An attacker could leverage this vulnerability to execute code in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
plugins\audio_filter\libmpgatofixed32_plugin.dll in VideoLAN VLC media player 2.2.4 allows remote attackers to cause a denial of service (invalid read and application crash) or possibly have unspecified other impact via a crafted file.
An issue was discovered in Foxit 3D Plugin Beta before 9.4.0.16807 for Foxit Reader and PhantomPDF. The application could encounter an Out-of-Bounds Read in Indexing or a Heap Overflow and crash during handling of certain PDF files that embed specifically crafted 3D content, due to an array access violation.
In all Qualcomm products with Android releases from CAF using the Linux kernel, when accessing the sde_rotator debug interface for register reading with multiple processes, one process can free the debug buffer while another process still has the debug buffer in use.
Insufficient input validation in WebGL in Google Chrome prior to 72.0.3626.81 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page.
The _checkPolkitPrivilege function in serviceHelper.py in Back In Time (aka backintime) 1.1.18 and earlier uses a deprecated polkit authorization method (unix-process) that is subject to a race condition (time of check, time of use). With this authorization method, the owner of a process requesting a polkit operation is checked by polkitd via /proc/<pid>/status, by which time the requesting process may have been replaced by a different process with the same PID that has different privileges then the original requester.
Certain detection module of P30, P30 Pro, Honor V20 smartphone whith Versions earlier than ELLE-AL00B 9.1.0.193(C00E190R1P21), Versions earlier than VOGUE-AL00A 9.1.0.193(C00E190R1P12), Versions earlier than Princeton-AL10B 9.1.0.233(C00E233R4P3) have a race condition vulnerability. The system does not lock certain function properly, when the function is called by multiple processes could cause out of bound write. An attacker tricks the user into installing a malicious application, successful exploit could cause malicious code execution.
An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in iOS 12.1.3, macOS Mojave 10.14.3, iTunes 12.9.3 for Windows. A malicious application may be able to elevate privileges.
An issue was discovered in the metrics-util crate before 0.7.0 for Rust. There is a data race and memory corruption because AtomicBucket<T> unconditionally implements the Send and Sync traits.
An issue was discovered in ytnef before 1.9.1. This is related to a patch described as "7 of 9. Out of Bounds read."