pcre2test.c in PCRE2 10.23 allows remote attackers to cause a denial of service (heap-based buffer overflow) or possibly have unspecified other impact via a crafted regular expression.
PCRE2 before 10.30 has an out-of-bounds write caused by a stack-based buffer overflow in pcre2_match.c, related to a "pattern with very many captures."
libpcre1 in PCRE 8.40 and libpcre2 in PCRE2 10.23 allow remote attackers to cause a denial of service (segmentation violation for read access, and application crash) by triggering an invalid Unicode property lookup.
Stack-based buffer overflow in the pcre32_copy_substring function in pcre_get.c in libpcre1 in PCRE 8.40 allows remote attackers to cause a denial of service (WRITE of size 4) or possibly have unspecified other impact via a crafted file.
Stack-based buffer overflow in the pcre32_copy_substring function in pcre_get.c in libpcre1 in PCRE 8.40 allows remote attackers to cause a denial of service (WRITE of size 268) or possibly have unspecified other impact via a crafted file.
Perl-Compatible Regular Expression (PCRE) library before 6.2 does not properly count the number of named capturing subpatterns, which allows context-dependent attackers to cause a denial of service (crash) via a regular expression with a large number of named subpatterns, which triggers a buffer overflow. NOTE: this issue was originally subsumed by CVE-2006-7224, but that CVE has been REJECTED and split.
Buffer overflow in PCRE before 7.6 allows remote attackers to execute arbitrary code via a regular expression containing a character class with a large number of characters with Unicode code points greater than 255.
Heap-based buffer overflow in Perl-Compatible Regular Expression (PCRE) library before 7.3 allows context-dependent attackers to execute arbitrary code via a singleton Unicode sequence in a character class in a regex pattern, which is incorrectly optimized.
Perl-Compatible Regular Expression (PCRE) library before 7.3 allows context-dependent attackers to cause a denial of service (crash) and possibly execute arbitrary code via regex patterns containing unmatched "\Q\E" sequences with orphan "\E" codes.
The compile_branch function in pcre_compile.c in PCRE 8.x before 8.39 and pcre2_compile.c in PCRE2 before 10.22 mishandles patterns containing an (*ACCEPT) substring in conjunction with nested parentheses, which allows remote attackers to execute arbitrary code or cause a denial of service (stack-based buffer overflow) via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror, aka ZDI-CAN-3542.
The pcre_compile2 function in pcre_compile.c in PCRE 8.38 mishandles the /((?:F?+(?:^(?(R)a+\"){99}-))(?J)(?'R'(?'R'<((?'RR'(?'R'\){97)?J)?J)(?'R'(?'R'\){99|(:(?|(?'R')(\k'R')|((?'R')))H'R'R)(H'R))))))/ pattern and related patterns with named subgroups, which allows remote attackers to cause a denial of service (heap-based buffer overflow) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror.
The compile_regex function in pcre_compile.c in PCRE before 8.38 and pcre2_compile.c in PCRE2 before 10.2x mishandles the /(?J:(?|(:(?|(?'R')(\k'R')|((?'R')))H'Rk'Rf)|s(?'R'))))/ and /(?J:(?|(:(?|(?'R')(\z(?|(?'R')(\k'R')|((?'R')))k'R')|((?'R')))H'Ak'Rf)|s(?'R')))/ patterns, and related patterns with certain group references, which allows remote attackers to cause a denial of service (heap-based buffer overflow) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror.
PCRE before 8.38 mishandles certain repeated conditional groups, which allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror.
The pcre_exec function in pcre_exec.c in PCRE before 8.38 mishandles a // pattern with a \01 string, which allows remote attackers to cause a denial of service (heap-based buffer overflow) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror.
The pcre_compile function in pcre_compile.c in PCRE before 8.38 mishandles certain [: nesting, which allows remote attackers to cause a denial of service (CPU consumption) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror.
PCRE before 8.38 mishandles the /(?:|a|){100}x/ pattern and related patterns, which allows remote attackers to cause a denial of service (infinite recursion) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror.
PCRE before 8.38 mishandles certain instances of the (?| substring, which allows remote attackers to cause a denial of service (unintended recursion and buffer overflow) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror, a related issue to CVE-2015-8384 and CVE-2015-8395.
The match function in pcre_exec.c in PCRE before 8.37 mishandles the /(?:((abcd))|(((?:(?:(?:(?:abc|(?:abcdef))))b)abcdefghi)abc)|((*ACCEPT)))/ pattern and related patterns involving (*ACCEPT), which allows remote attackers to obtain sensitive information from process memory or cause a denial of service (partially initialized memory and application crash) via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror, aka ZDI-CAN-2547.
PCRE before 8.38 mishandles the /(?|(\k'Pm')|(?'Pm'))/ pattern and related patterns with certain forward references, which allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror.
PCRE before 8.38 mishandles the /(?J)(?'d'(?'d'\g{d}))/ pattern and related patterns with certain recursive back references, which allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror, a related issue to CVE-2015-8392 and CVE-2015-8395.
PCRE before 8.38 mishandles the interaction of lookbehind assertions and mutually recursive subpatterns, which allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror.
Heap-based buffer overflow in the find_fixedlength function in pcre_compile.c in PCRE before 8.38 allows remote attackers to cause a denial of service (crash) or obtain sensitive information from heap memory and possibly bypass the ASLR protection mechanism via a crafted regular expression with an excess closing parenthesis.
PCRE 7.8 and 8.32 through 8.37, and PCRE2 10.10 mishandle group empty matches, which might allow remote attackers to cause a denial of service (stack-based buffer overflow) via a crafted regular expression, as demonstrated by /^(?:(?(1)\\.|([^\\\\W_])?)+)+$/.
pcre_jit_compile.c in PCRE 8.35 does not properly use table jumps to optimize nested alternatives, which allows remote attackers to cause a denial of service (stack memory corruption) or possibly have unspecified other impact via a crafted string, as demonstrated by packets encountered by Suricata during use of a regular expression in an Emerging Threats Open ruleset.
Heap-based buffer overflow in PCRE 8.36 and earlier allows remote attackers to cause a denial of service (crash) or have other unspecified impact via a crafted regular expression, related to an assertion that allows zero repeats.
Perl-Compatible Regular Expression (PCRE) library before 7.0 does not properly calculate sizes for unspecified "multiple forms of character class", which triggers a buffer overflow that allows context-dependent attackers to cause a denial of service (crash) and possibly execute arbitrary code.
PCRE before 8.38 mishandles the /(?=di(?<=(?1))|(?=(.))))/ pattern and related patterns with an unmatched closing parenthesis, which allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror.
PCRE before 8.38 mishandles certain references, which allows remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror, a related issue to CVE-2015-8384 and CVE-2015-8392.
PCRE before 8.36 mishandles the /(((a\2)|(a*)\g<-1>))*/ pattern and related patterns with certain internal recursive back references, which allows remote attackers to cause a denial of service (segmentation fault) or possibly have unspecified other impact via a crafted regular expression, as demonstrated by a JavaScript RegExp object encountered by Konqueror.
The Microsoft Windows Subsystem for Linux on Microsoft Windows 10 1703 allows a denial of service vulnerability when it improperly handles objects in memory, aka "Windows Subsystem for Linux Denial of Service Vulnerability".
PSKMAD.sys in Panda Free Antivirus 18.0 allows local users to cause a denial of service (BSoD) via a crafted DeviceIoControl request to \\.\PSMEMDriver.
The Windows installer for NTP before 4.2.8p10 and 4.3.x before 4.3.94 allows local users to have unspecified impact via vectors related to an argument with multiple null bytes.
A kernel pool overflow in the driver hitmanpro37.sys in Sophos SurfRight HitmanPro before 3.7.20 Build 286 (included in the HitmanPro.Alert solution and Sophos Clean) allows local users to crash the OS via a malformed IOCTL call.
In the Linux kernel, the following vulnerability has been resolved: ntfs3: Add bounds checking to mi_enum_attr() Added bounds checking to make sure that every attr don't stray beyond valid memory region.
Heap-based buffer overflow in the vrend_create_vertex_elements_state function in vrend_renderer.c in virglrenderer before 0.6.0 allows local guest OS users to cause a denial of service (out-of-bounds array access and crash) via the num_elements parameter.
The parse_instruction function in gallium/auxiliary/tgsi/tgsi_text.c in virglrenderer before 0.6.0 allows local guest OS users to cause a denial of service (out-of-bounds array access and process crash) via a crafted texture instruction.
A buffer overflow vulnerability in Juniper Networks NorthStar Controller Application prior to version 2.1.0 Service Pack 1 may allow an authenticated malicious user to cause a buffer overflow leading to a denial of service.
Huawei eNSP software with software of versions earlier than V100R002C00B510 has a buffer overflow vulnerability. Due to the improper validation of specific command line parameter, a local attacker could exploit this vulnerability to cause the software process abnormal.
PEM module of Huawei DP300 V500R002C00; IPS Module V500R001C00; V500R001C30; NGFW Module V500R001C00; V500R002C00; NIP6300 V500R001C00; V500R001C30; NIP6600 V500R001C00; V500R001C30; RP200 V500R002C00; V600R006C00; S12700 V200R007C00; V200R007C01; V200R008C00; V200R009C00; V200R010C00; S1700 V200R006C10; V200R009C00; V200R010C00; S2700 V200R006C10; V200R007C00; V200R008C00; V200R009C00; V200R010C00; S5700 V200R006C00; V200R007C00; V200R008C00; V200R009C00; V200R010C00; S6700 V200R008C00; V200R009C00; V200R010C00; S7700 V200R007C00; V200R008C00; V200R009C00; V200R010C00; S9700 V200R007C00; V200R007C01; V200R008C00; V200R009C00; V200R010C00; Secospace USG6300 V500R001C00; V500R001C30; Secospace USG6500 V500R001C00; V500R001C30; Secospace USG6600 V500R001C00; V500R001C30S; TE30 V100R001C02; V100R001C10; V500R002C00; V600R006C00; TE40 V500R002C00; V600R006C00; TE50 V500R002C00; V600R006C00; TE60 V100R001C01; V100R001C10; V500R002C00; V600R006C00; TP3106 V100R002C00; TP3206 V100R002C00; V100R002C10; USG9500 V500R001C00; V500R001C30; ViewPoint 9030 V100R011C02; V100R011C03 has a heap overflow vulnerability due to insufficient verification. An authenticated local attacker can make processing crash by a malicious certificate. The attacker can exploit this vulnerability to cause a denial of service.
Huawei AR120-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR1200 V200R006C10, V200R006C13, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR1200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR150 V200R006C10, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR150-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR160 V200R006C10, V200R006C12, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR200 V200R006C10, V200R007C00, V200R007C01, V200R008C20, V200R008C30, AR200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR2200 V200R006C10, V200R006C13, V200R006C16, V200R007C00, V200R007C01, V200R007C02, V200R008C20, V200R008C30, AR2200-S V200R006C10, V200R007C00, V200R008C20, V200R008C30, AR3200 V200R006C10, V200R006C11, V200R007C00, V200R007C01, V200R007C02, V200R008C00, V200R008C10, V200R008C20, V200R008C30, AR3600 V200R006C10, V200R007C00, V200R007C01, V200R008C20, AR510 V200R006C10, V200R006C12, V200R006C13, V200R006C15, V200R006C16, V200R006C17, V200R007C00, V200R008C20, V200R008C30, DP300 V500R002C00, MAX PRESENCE V100R001C00, NetEngine16EX V200R006C10, V200R007C00, V200R008C20, V200R008C30, RP200 V500R002C00, V600R006C00, SRG1300 V200R006C10, V200R007C00, V200R007C02, V200R008C20, V200R008C30, SRG2300 V200R006C10, V200R007C00, V200R007C02, V200R008C20, V200R008C30, SRG3300 V200R006C10, V200R007C00, V200R008C20, V200R008C30, TE30 V100R001C02, V100R001C10, V500R002C00, V600R006C00, TE40 V500R002C00, V600R006C00, TE50 V500R002C00, V600R006C00, TE60 V100R001C01, V100R001C10, V500R002C00, V600R006C00, TP3106 V100R002C00, TP3206 V100R002C00, V100R002C10 have a buffer overflow vulnerability. An authenticated, local attacker may craft a specific XML file to the affected products. Due to insufficient input validation, successful exploit will cause some service abnormal.
A flaw was found in the hugetlb_mcopy_atomic_pte function in mm/hugetlb.c in the Linux kernel before 4.13.12. A lack of size check could cause a denial of service (BUG).
The SUSE coreutils-i18n.patch for GNU coreutils allows context-dependent attackers to cause a denial of service (segmentation fault and crash) via a long string to the uniq command, which triggers a stack-based buffer overflow in the alloca function.
Improper buffer restrictions in Intel(R) Media SDK software all versions may allow an authenticated user to potentially enable denial of service via local access.
The eSpace Meeting ActiveX control (eSpaceStatusCtrl.dll) in Huawei eSpace Desktop before V200R001C03 allows local users to cause a denial of service (memory overflow) via unspecified vectors.
The ia64 subsystem in the Linux kernel before 2.6.26 allows local users to cause a denial of service (stack consumption and system crash) via a crafted application that leverages the mishandling of invalid Register Stack Engine (RSE) state.
Buffer overflow in McAfee Data Loss Prevention (DLPe) for Windows 11.x prior to 11.3.2.8 allows local user to cause the Windows operating system to "blue screen" via a carefully constructed message sent to DLPe which bypasses DLPe internal checks and results in DLPe reading unallocated memory.
NCP Network Communication Secure Client 8.11 Build 146, and possibly other versions, allows local users to cause a denial of service (CPU consumption) via a large number of arguments to ncprwsnt.exe, possibly due to a buffer overflow.
Buffer overflow in the SQLDriverConnect function in unixODBC 2.0.10, 2.3.1, and earlier allows local users to cause a denial of service (crash) via a long string in the FILEDSN option. NOTE: this issue might not be a vulnerability, since the ability to set this option typically implies that the attacker already has legitimate access to cause a DoS or execute code, and therefore the issue would not cross privilege boundaries. There may be limited attack scenarios if isql command-line options are exposed to an attacker, although it seems likely that other, more serious issues would also be exposed, and this issue might not cross privilege boundaries in that context.
BazisVirtualCDBus.sys in WinCDEmu 3.6 allows local users to cause a denial of service (system crash) via the unmount command to batchmnt.exe.
Buffer overflow in McAfee Data Loss Prevention (DLPe) for Windows 11.x prior to 11.3.2.8 allows local user to cause the Windows operating system to "blue screen" via an encrypted message sent to DLPe which when decrypted results in DLPe reading unallocated memory.