Insufficient security checks exist in the recovery procedure used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.43. A HTTP request can allow for a user to perform a firmware upgrade using a crafted image. Before any firmware upgrades in this image are flashed to the device, binaries as well as arguments to shell commands contained in the image are executed with elevated privileges.
An exploitable command injection vulnerability exists in the web management interface used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.43. A specially crafted HTTP request can allow for a user to inject arbitrary shell characters during the SoftAP configuration resulting in command injection. An attacker can simply send an HTTP request to the device to trigger this vulnerability.
An exploitable command injection vulnerability exists in the web management interface used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.37. A specially crafted HTTP request can allow for a user to inject arbitrary shell characters during a password change resulting in command injection. An attacker can simply send an HTTP request to the device to trigger this vulnerability.
An exploitable buffer overflow vulnerability exists in the DDNS client used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.43. On devices with DDNS enabled, an attacker who is able to intercept HTTP connections will be able to fully compromise the device by creating a rogue HTTP server.
An exploitable buffer overflow vulnerability exists in the DDNS client used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.43. On devices with DDNS enabled, an attacker who is able to intercept HTTP connections will be able to fully compromise the device by creating a rogue HTTP server.
An exploitable buffer overflow vulnerability exists in the DDNS client used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.43. On devices with DDNS enabled, an attacker who is able to intercept HTTP connections will be able to fully compromise the device by creating a rogue HTTP server.
An exploitable buffer overflow vulnerability exists in the Multi-Camera interface used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.43. A specially crafted request on port 10000 can cause a buffer overflow resulting in overwriting arbitrary data.
An exploitable buffer overflow vulnerability exists in the web management interface used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.43. A specially crafted HTTP request can cause a buffer overflow resulting in overwriting arbitrary data. An attacker can simply send an HTTP request to the device to trigger this vulnerability.
An exploitable buffer overflow vulnerability exists in the UPnP implementation used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.43. A specially crafted UPnP discovery response can cause a buffer overflow resulting in overwriting arbitrary data. An attacker needs to be in the same subnetwork and reply to a discovery message to trigger this vulnerability.
An exploitable buffer overflow vulnerability exists in the Multi-Camera interface used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.43. A specially crafted request on port 10000 can cause a buffer overflow resulting in overwriting arbitrary data.
An exploitable buffer overflow vulnerability exists in the DDNS client used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.43. On devices with DDNS enabled, an attacker who is able to intercept HTTP connections will be able to fully compromise the device by creating a rogue HTTP server.
An exploitable buffer overflow vulnerability exists in the web management interface used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.37. A specially crafted HTTP request can cause a buffer overflow resulting in overwriting arbitrary data. An attacker can simply send an HTTP request to the device to trigger this vulnerability.
An exploitable buffer overflow vulnerability exists in the web management interface used by the Foscam C1 Indoor HD Camera running application firmware 2.52.2.37. A specially crafted HTTP request can cause a buffer overflow resulting in overwriting arbitrary data. An attacker can simply send an HTTP request to the device to trigger this vulnerability.
Multiple buffer overflow vulnerabilities exist in the AceManager Web API of ALEOS before 4.13.0, 4.9.5, and 4.4.9.
Certain IBM Aspera applications are vulnerable to buffer overflow after valid authentication, which could allow an attacker with intimate knowledge of the system to execute arbitrary code through a service. IBM X-Force ID: 180902.
A vulnerability in the web-based management interface of Cisco Small Business RV340, RV340W, RV345, and RV345P Dual WAN Gigabit VPN Routers could allow an authenticated, remote attacker to execute arbitrary code or cause the web-based management process on the device to restart unexpectedly, resulting in a denial of service (DoS) condition. The attacker must have valid administrator credentials. This vulnerability is due to insufficient validation of user-supplied input to the web-based management interface. An attacker could exploit this vulnerability by sending crafted HTTP input to an affected device. A successful exploit could allow the attacker to execute arbitrary code as the root user on the underlying operating system or cause the web-based management process to restart, resulting in a DoS condition.
A buffer overflow vulnerability exists in Linksys WRT54GL Wireless-G Broadband Router with firmware <= 4.30.18.006. A stack-based buffer overflow in the Start_EPI function within the httpd binary allows an authenticated attacker with administrator privileges to execute arbitrary commands on the underlying Linux operating system as root. This vulnerablity can be triggered over the network via a malicious POST request to /apply.cgi.
A buffer overflow vulnerability in the access control section on NETGEAR JGS516PE/GS116Ev2 v2.6.0.43 devices (in the administration web panel) allows an attacker to inject IP addresses into the whitelist via the checkedList parameter to the delete command.
A buffer overflow vulnerability exists in the adm.cgi set_wzap() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger this vulnerability.
An arbitrary code execution vulnerability exists in the adm.cgi set_MeshAp() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to arbitrary code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.
A buffer overflow vulnerability in the PAN-OS management web interface allows authenticated administrators to disrupt system processes and potentially execute arbitrary code with root privileges. This issue impacts only PAN-OS 10.0 versions earlier than PAN-OS 10.0.1.
A buffer overflow in the httpd daemon on TP-Link TL-WR841N V10 (firmware version 3.16.9) devices allows an authenticated remote attacker to execute arbitrary code via a GET request to the page for the configuration of the Wi-Fi network.
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute code via a network. We have already fixed the vulnerability in the following versions: QTS 5.1.4.2596 build 20231128 and later QuTS hero h5.1.4.2596 build 20231128 and later QuTScloud c5.1.5.2651 and later
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute code via a network. We have already fixed the vulnerability in the following versions: QTS 5.1.3.2578 build 20231110 and later QuTS hero h5.1.3.2578 build 20231110 and later QuTScloud c5.1.5.2651 and later
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute code via a network. We have already fixed the vulnerability in the following versions: QTS 5.1.4.2596 build 20231128 and later QuTS hero h5.1.4.2596 build 20231128 and later
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute code via a network. We have already fixed the vulnerability in the following versions: QTS 5.1.4.2596 build 20231128 and later QuTS hero h5.1.4.2596 build 20231128 and later
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute code via a network. We have already fixed the vulnerability in the following versions: QTS 5.1.4.2596 build 20231128 and later QuTS hero h5.1.4.2596 build 20231128 and later
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute code via a network. We have already fixed the vulnerability in the following versions: QTS 5.1.4.2596 build 20231128 and later QuTS hero h5.1.4.2596 build 20231128 and later
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute code via a network. We have already fixed the vulnerability in the following versions: QTS 5.1.4.2596 build 20231128 and later QuTS hero h5.1.4.2596 build 20231128 and later
Certain NETGEAR devices are affected by a buffer overflow by an authenticated user. This affects D6220 before 1.0.0.38, D6400 before 1.0.0.74, D7000v2 before 1.0.0.74, D8500 before 1.0.3.39, DGN2200v4 before 1.0.0.102, DGN2200Bv4 before 1.0.0.102, EX3700 before 1.0.0.70, EX3800 before 1.0.0.70, EX6000 before 1.0.0.30, EX6100 before 1.0.2.22, EX6120 before 1.0.0.40, EX6130 before 1.0.0.22, EX6150 before 1.0.0.38, EX6200 before 1.0.3.86, EX7000 before 1.0.0.64, R6250 before 1.0.4.20, R6300v2 before 1.0.4.22, R6400 before 1.0.1.32, R6400v2 before 1.0.2.52, R6700 before 1.0.1.44, R6900 before 1.0.1.44, R6900P before 1.3.0.18, R7000 before 1.0.9.28, R7000P before 1.3.0.18, R7300DST before 1.0.0.62, R7900 before 1.0.2.10, R7900P before 1.3.0.10, R8000 before 1.0.4.12, R8000P before 1.3.0.10, R8300 before 1.0.2.116, R8500 before 1.0.2.116, WN2500RPv2 before 1.0.1.52, WNDR3400v3 before 1.0.1.18, and WNR3500Lv2 before 1.2.0.46.
Several stack-based buffer overflow vulnerabilities exist in the DetranCLI command parsing functionality of Siretta QUARTZ-GOLD G5.0.1.5-210720-141020. A specially-crafted network packet can lead to arbitrary command execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This buffer overflow is in the function that manages the 'no vpn l2tp advanced name WORD dns (yes|no) mtu <128-16384> mru <128-16384> auth (on|off) password (WORD|null)' command template.
Several stack-based buffer overflow vulnerabilities exist in the DetranCLI command parsing functionality of Siretta QUARTZ-GOLD G5.0.1.5-210720-141020. A specially-crafted network packet can lead to arbitrary command execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This buffer overflow is in the function that manages the 'no vpn l2tp advanced name WORD dns (yes|no) mtu <128-16384> mru <128-16384> auth (on|off) password (WORD|null) options WORD' command template.
Several stack-based buffer overflow vulnerabilities exist in the DetranCLI command parsing functionality of Siretta QUARTZ-GOLD G5.0.1.5-210720-141020. A specially-crafted network packet can lead to arbitrary command execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This buffer overflow is in the function that manages the 'no vpn pptp advanced name WORD dns (yes|no) mtu <128-16384> mru <128-16384> mppe (on|off) stateful (on|off) options WORD' command template.
Several stack-based buffer overflow vulnerabilities exist in the DetranCLI command parsing functionality of Siretta QUARTZ-GOLD G5.0.1.5-210720-141020. A specially-crafted network packet can lead to arbitrary command execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This buffer overflow is in the function that manages the 'no vpn schedule name1 WORD name2 WORD policy (failover|backup) description (WORD|null)' command template.
Several stack-based buffer overflow vulnerabilities exist in the DetranCLI command parsing functionality of Siretta QUARTZ-GOLD G5.0.1.5-210720-141020. A specially-crafted network packet can lead to arbitrary command execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This buffer overflow is in the function that manages the 'vpn pptp advanced name WORD dns (yes|no) mtu <128-16384> mru <128-16384> mppe (on|off) stateful (on|off) options WORD' command template.
Several stack-based buffer overflow vulnerabilities exist in the DetranCLI command parsing functionality of Siretta QUARTZ-GOLD G5.0.1.5-210720-141020. A specially-crafted network packet can lead to arbitrary command execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This buffer overflow is in the function that manages the 'vpn l2tp advanced name WORD dns (yes|no) mtu <128-16384> mru <128-16384> auth (on|off) password (WORD|null) options WORD' command template.
Several stack-based buffer overflow vulnerabilities exist in the DetranCLI command parsing functionality of Siretta QUARTZ-GOLD G5.0.1.5-210720-141020. A specially-crafted network packet can lead to arbitrary command execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This buffer overflow is in the function that manages the 'wlan filter mac address WORD descript WORD' command template.
Several stack-based buffer overflow vulnerabilities exist in the DetranCLI command parsing functionality of Siretta QUARTZ-GOLD G5.0.1.5-210720-141020. A specially-crafted network packet can lead to arbitrary command execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This buffer overflow is in the function that manages the 'vpn schedule name1 WORD name2 WORD policy (failover|backup) description (WORD|null)' command template.
Several stack-based buffer overflow vulnerabilities exist in the DetranCLI command parsing functionality of Siretta QUARTZ-GOLD G5.0.1.5-210720-141020. A specially-crafted network packet can lead to arbitrary command execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This buffer overflow is in the function that manages the 'vpn pptp advanced name WORD dns (yes|no) mtu <128-16384> mru <128-16384> mppe (on|off) stateful (on|off)' command template.
Buffer overflow vulnerability in Nintendo Wi-Fi Network Adaptor WAP-001 All versions allows an attacker with an administrative privilege to execute arbitrary code via unspecified vectors.
A heap-based buffer overflow vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute code via a network. We have already fixed the vulnerability in the following versions: QTS 5.1.2.2533 build 20230926 and later QuTS hero h5.1.2.2534 build 20230927 and later QuTScloud c5.1.5.2651 and later
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute code via a network. We have already fixed the vulnerability in the following versions: QTS 5.1.4.2596 build 20231128 and later QuTS hero h5.1.4.2596 build 20231128 and later QuTScloud c5.1.5.2651 and later
In PHP versions 7.4.x below 7.4.30, 8.0.x below 8.0.20, and 8.1.x below 8.1.7, when pdo_mysql extension with mysqlnd driver, if the third party is allowed to supply host to connect to and the password for the connection, password of excessive length can trigger a buffer overflow in PHP, which can lead to a remote code execution vulnerability.
Multiple buffer overflow vulnerabilities exist in the qos.cgi qos_settings() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A buffer overflow vulnerability exists in the `qos_dat` POST parameter.
Multiple buffer overflow vulnerabilities exist in the internet.cgi set_qos() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.This vulnerability exists in the `en_enable` POST parameter.
Multiple buffer overflow vulnerabilities exist in the internet.cgi set_qos() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.This vulnerability exists in the `cli_mac` POST parameter.
Multiple buffer overflow vulnerabilities exist in the qos.cgi qos_settings() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A buffer overflow vulnerability exists in the `sel_mode` POST parameter.
A buffer overflow vulnerability exists in the internet.cgi set_add_routing() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger this vulnerability.
Multiple buffer overflow vulnerabilities exist in the internet.cgi set_qos() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.This vulnerability exists in the `cli_name` POST parameter.
Multiple buffer overflow vulnerabilities exist in the qos.cgi qos_settings() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A buffer overflow vulnerability exists in the `qos_bandwidth` POST parameter.