An issue was discovered on Vera VeraEdge 1.7.19 and Veralite 1.7.481 devices. The device provides UPnP services that are available on port 3480 and can also be accessed via port 80 using the url "/port_3480". It seems that the UPnP services provide "request_image" as one of the service actions for a normal user to retrieve an image from a camera that is controlled by the controller. It seems that the "URL" parameter passed in the query string is not sanitized and is stored on the stack which allows an attacker to overflow the buffer. The function "LU::Generic_IP_Camera_Manager::REQ_Image" is activated when the lu_request_image is passed as the "id" parameter in query string. This function then calls "LU::Generic_IP_Camera_Manager::GetUrlFromArguments" and passes a "pointer" to the function where it will be allowed to store the value from the URL parameter. This pointer is passed as the second parameter $a2 to the function "LU::Generic_IP_Camera_Manager::GetUrlFromArguments". However, neither the callee or the caller in this case performs a simple length check and as a result an attacker who is able to send more than 1336 characters can easily overflow the values stored on the stack including the $RA value and thus execute code on the device.
An issue was discovered on Vera VeraEdge 1.7.19 and Veralite 1.7.481 devices. The device provides a web user interface that allows a user to manage the device. As a part of the functionality the device allows a user to install applications written in the Lua programming language. Also the interface allows any user to write his/her application in the Lua language. However, this functionality is not protected by authentication and this allows an attacker to run arbitrary Lua code on the device. The POST request is forwarded to LuaUPNP daemon on the device. This binary handles the received Lua code in the function "LU::JobHandler_LuaUPnP::RunLua(LU::JobHandler_LuaUPnP *__hidden this, LU::UPnPActionWrapper *)". The value in the "code" parameter is then passed to the function "LU::LuaInterface::RunCode(char const*)" which actually loads the Lua engine and runs the code.
An issue was discovered on Vera VeraEdge 1.7.19 and Veralite 1.7.481 devices. The device provides a web user interface that allows a user to manage the device. As a part of the functionality the device firmware file contains a file known as proxy.sh which allows the device to proxy a specific request to and from from another website. This is primarily used as a method of communication between the device and Vera website when the user is logged in to the https://home.getvera.com and allows the device to communicate between the device and website. One of the parameters retrieved by this specific script is "url". This parameter is not sanitized by the script correctly and is passed in a call to "eval" to execute "curl" functionality. This allows an attacker to escape from the executed command and then execute any commands of his/her choice.
An issue was discovered on Vera VeraEdge 1.7.19 and Veralite 1.7.481 devices. The device provides a web user interface that allows a user to manage the device. As a part of the functionality the device firmware file contains a file known as relay.sh which allows the device to create relay ports and connect the device to Vera servers. This is primarily used as a method of communication between the device and Vera servers so the devices can be communicated with even when the user is not at home. One of the parameters retrieved by this specific script is "remote_host". This parameter is not sanitized by the script correctly and is passed in a call to "eval" to execute another script where remote_host is concatenated to be passed a parameter to the second script. This allows an attacker to escape from the executed command and then execute any commands of his/her choice.
A flaw has been found in Tenda RX3 16.03.13.11. This issue affects the function set_device_name of the file /goform/setBlackRule of the component MAC Filtering Configuration Endpoint. This manipulation of the argument devName/mac causes stack-based buffer overflow. The attack is possible to be carried out remotely. The exploit has been published and may be used.
A vulnerability was identified in Tenda RX3 16.03.13.11. Affected is an unknown function of the file /goform/fast_setting_wifi_set. Such manipulation of the argument ssid_5g leads to stack-based buffer overflow. The attack can be launched remotely. The exploit is publicly available and might be used.
A weakness has been identified in UTT 1200GW up to 3.0.0-170831. The affected element is an unknown function of the file /goform/formConfigDnsFilterGlobal. This manipulation of the argument GroupName causes buffer overflow. The attack can be initiated remotely. The exploit has been made available to the public and could be exploited. The vendor was contacted early about this disclosure but did not respond in any way.
A vulnerability was identified in Tenda AC21 16.03.08.16. The affected element is the function sub_45BB10 of the file /goform/WifiExtraSet. The manipulation of the argument wpapsk_crypto leads to buffer overflow. It is possible to initiate the attack remotely. The exploit is publicly available and might be used.
A vulnerability was detected in Tenda AC8 16.03.33.05. Affected is the function fromSetWifiGusetBasic of the file /goform/WifiGuestSet of the component httpd. The manipulation of the argument shareSpeed results in buffer overflow. The attack may be launched remotely. The exploit is now public and may be used.
An issue was discovered on D-Link DSL-3782 EU 1.01 devices. An authenticated user can pass a long buffer as a 'show' parameter to the '/userfs/bin/tcapi' binary (in the Diagnostics component) using the 'show <node_name>' function and cause memory corruption. Furthermore, it is possible to redirect the flow of the program and execute arbitrary code.
A flaw has been found in Tenda AC8 16.03.33.05. Affected by this vulnerability is an unknown functionality of the file /goform/fast_setting_wifi_set of the component Embedded Httpd Service. This manipulation of the argument timeZone causes buffer overflow. Remote exploitation of the attack is possible. The exploit has been published and may be used.
An issue was discovered on D-Link DSL-3782 EU 1.01 devices. An authenticated user can pass a long buffer as a 'commit' parameter to the '/userfs/bin/tcapi' binary (in the Diagnostics component) using the 'commit <node_name>' function and cause memory corruption. Furthermore, it is possible to redirect the flow of the program and execute arbitrary code.
A vulnerability was discovered in SPICE before version 0.14.1 where the generated code used for demarshalling messages lacked sufficient bounds checks. A malicious client or server, after authentication, could send specially crafted messages to its peer which would result in a crash or, potentially, other impacts.
A vulnerability has been found in Tenda RX3 16.03.13.11. Impacted is the function fromSetIpMacBind of the file /goform/SetIpMacBind. Such manipulation of the argument list leads to stack-based buffer overflow. The attack may be performed from remote. The exploit has been disclosed to the public and may be used.
An issue was discovered on D-Link DSL-3782 EU 1.01 devices. An authenticated user can pass a long buffer as a 'read' parameter to the '/userfs/bin/tcapi' binary (in the Diagnostics component) using the 'read <node_name>' function and cause memory corruption. Furthermore, it is possible to redirect the flow of the program and execute arbitrary code.
A security flaw has been discovered in Tenda AC21 up to 16.03.08.16. Affected by this vulnerability is the function sscanf of the file /goform/SetStaticRouteCfg. The manipulation of the argument list results in buffer overflow. The attack can be launched remotely. The exploit has been released to the public and may be exploited.
KadNode version version 2.2.0 contains a Buffer Overflow vulnerability in Arguments when starting up the binary that can result in Control of program execution flow, leading to remote code execution.
A vulnerability was identified in Tenda TX9 up to 22.03.02.10_multi. Affected by this issue is the function sub_4223E0 of the file /goform/setMacFilterCfg. Such manipulation of the argument deviceList leads to buffer overflow. The attack may be launched remotely. The exploit is publicly available and might be used.
A security flaw has been discovered in Tenda RX3 16.03.13.11. Affected by this vulnerability is an unknown functionality of the file /goform/openSchedWifi. Performing a manipulation of the argument schedStartTime/schedEndTime results in stack-based buffer overflow. The attack may be initiated remotely. The exploit has been released to the public and may be used for attacks.
A vulnerability was found in Tenda TX9 up to 22.03.02.10_multi. Affected is the function sub_42D03C of the file /goform/SetStaticRouteCfg. The manipulation of the argument list results in buffer overflow. The attack can be launched remotely. The exploit has been made public and could be used.
A vulnerability was found in Tenda AC1206 15.03.06.23. It has been rated as critical. This issue affects the function formSetMacFilterCfg of the file /goform/setMacFilterCfg. The manipulation of the argument deviceList leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability, which was classified as critical, was found in Tenda AC10 16.03.10.13. Affected is the function FUN_0046AC38 of the file /goform/WifiExtraSet. The manipulation of the argument wpapsk_crypto leads to stack-based buffer overflow. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used.
A vulnerability in the Import Cisco IMC configuration utility of Cisco Integrated Management Controller (IMC) could allow an authenticated, remote attacker to cause a denial of service (DoS) condition and implement arbitrary commands with root privileges on an affected device. The vulnerability is due to improper bounds checking by the import-config process. An attacker could exploit this vulnerability by sending malicious packets to an affected device. When the packets are processed, an exploitable buffer overflow condition may occur. A successful exploit could allow the attacker to implement arbitrary code on the affected device with elevated privileges.
Stack-based buffer overflow in Oracle Net Services for Oracle Database Server 9i release 2 and earlier allows attackers to execute arbitrary code via a "CREATE DATABASE LINK" query containing a connect string with a long USING parameter.
A vulnerability in the vContainer of the Cisco SD-WAN Solution could allow an authenticated, remote attacker to cause a denial of service (DoS) condition and execute arbitrary code as the root user. The vulnerability is due to improper bounds checking by the vContainer. An attacker could exploit this vulnerability by sending a malicious file to an affected vContainer instance. A successful exploit could allow the attacker to cause a buffer overflow condition on the affected vContainer, which could result in a DoS condition that the attacker could use to execute arbitrary code as the root user.
Multiple buffer overflows in Oracle 9i Database release 2, Release 1, 8i, 8.1.7, and 8.0.6 allow remote attackers to execute arbitrary code via (1) a long conversion string argument to the TO_TIMESTAMP_TZ function, (2) a long time zone argument to the TZ_OFFSET function, or (3) a long DIRECTORY parameter to the BFILENAME function.
A heap overflow vulnerability in Citrix NetScaler Gateway versions 10.1 before 135.8/135.12, 10.5 before 65.11, 11.0 before 70.12, and 11.1 before 52.13 allows a remote authenticated attacker to run arbitrary commands via unspecified vectors.
A vulnerability in the implementation of the Lua interpreter integrated in Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, remote attacker to execute arbitrary code with root privileges on the underlying Linux operating system of an affected device. The vulnerability is due to insufficient restrictions on the allowed Lua function calls within the context of user-supplied Lua scripts. A successful exploit could allow the attacker to trigger a heap overflow condition and execute arbitrary code with root privileges on the underlying Linux operating system of an affected device.
A vulnerability was found in Tenda RX3 16.03.13.11. The affected element is the function set_qosMib_list of the file /goform/formSetQosBand. Performing a manipulation of the argument list results in stack-based buffer overflow. It is possible to initiate the attack remotely. The exploit has been made public and could be used.
A vulnerability was determined in Tenda TX9 up to 22.03.02.10_multi. Affected by this vulnerability is the function sub_432580 of the file /goform/fast_setting_wifi_set. This manipulation of the argument ssid causes buffer overflow. The attack may be initiated remotely. The exploit has been publicly disclosed and may be utilized.
A vulnerability has been found in Tenda TX3 up to 16.03.13.11_multi. This impacts an unknown function of the file /goform/SetIpMacBind. The manipulation of the argument list leads to buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.
Several Ricoh printers have multiple buffer overflows parsing HTTP parameter settings for SNMP, which allow an attacker to cause a denial of service or code execution via crafted requests to the web server. Affected firmware versions depend on the printer models. One affected configuration is cpe:2.3:o:ricoh:sp_c250dn_firmware:-:*:*:*:*:*:*:* up to (including) 1.06 running on cpe:2.3:o:ricoh:sp_c250dn:-:*:*:*:*:*:*:*, cpe:2.3:o:ricoh:sp_c252dn:-:*:*:*:*:*:*:*. Another affected configuration is cpe:2.3:o:ricoh:sp_c250sf_firmware:-:*:*:*:*:*:*:* up to (including) 1.12 running on cpe:2.3:o:ricoh:sp_c250sf:-:*:*:*:*:*:*:*, cpe:2.3:o:ricoh:sp_c252sf:-:*:*:*:*:*:*:*.
A vulnerability in the SNMP implementation of could allow an authenticated, remote attacker to cause a reload of the affected system or to remotely execute code. An attacker could exploit this vulnerability by sending a crafted SNMP packet to the affected device. The vulnerability is due to a buffer overflow in the affected code area. The vulnerability affects all versions of SNMP (versions 1, 2c, and 3). The attacker must know the SNMP read only community string (SNMP version 2c or earlier) or the user credentials (SNMPv3). An exploit could allow the attacker to execute arbitrary code and obtain full control of the system or to cause a reload of the affected system. Only traffic directed to the affected system can be used to exploit this vulnerability.
The Simple Network Management Protocol (SNMP) subsystem of Cisco IOS and IOS XE Software contains multiple vulnerabilities that could allow an authenticated, remote attacker to remotely execute code on an affected system or cause an affected system to reload. An attacker could exploit these vulnerabilities by sending a crafted SNMP packet to an affected system via IPv4 or IPv6. Only traffic directed to an affected system can be used to exploit these vulnerabilities. The vulnerabilities are due to a buffer overflow condition in the SNMP subsystem of the affected software. The vulnerabilities affect all versions of SNMP - Versions 1, 2c, and 3. To exploit these vulnerabilities via SNMP Version 2c or earlier, the attacker must know the SNMP read-only community string for the affected system. To exploit these vulnerabilities via SNMP Version 3, the attacker must have user credentials for the affected system. A successful exploit could allow the attacker to execute arbitrary code and obtain full control of the affected system or cause the affected system to reload. Customers are advised to apply the workaround as contained in the Workarounds section below. Fixed software information is available via the Cisco IOS Software Checker. All devices that have enabled SNMP and have not explicitly excluded the affected MIBs or OIDs should be considered vulnerable. There are workarounds that address these vulnerabilities.
Stack-based buffer overflow in the reslist function in ntpq in NTP before 4.2.8p10 and 4.3.x before 4.3.94 allows remote servers have unspecified impact via a long flagstr variable in a restriction list response.
The Simple Network Management Protocol (SNMP) subsystem of Cisco IOS and IOS XE Software contains multiple vulnerabilities that could allow an authenticated, remote attacker to remotely execute code on an affected system or cause an affected system to reload. An attacker could exploit these vulnerabilities by sending a crafted SNMP packet to an affected system via IPv4 or IPv6. Only traffic directed to an affected system can be used to exploit these vulnerabilities. The vulnerabilities are due to a buffer overflow condition in the SNMP subsystem of the affected software. The vulnerabilities affect all versions of SNMP - Versions 1, 2c, and 3. To exploit these vulnerabilities via SNMP Version 2c or earlier, the attacker must know the SNMP read-only community string for the affected system. To exploit these vulnerabilities via SNMP Version 3, the attacker must have user credentials for the affected system. A successful exploit could allow the attacker to execute arbitrary code and obtain full control of the affected system or cause the affected system to reload. Customers are advised to apply the workaround as contained in the Workarounds section below. Fixed software information is available via the Cisco IOS Software Checker. All devices that have enabled SNMP and have not explicitly excluded the affected MIBs or OIDs should be considered vulnerable. There are workarounds that address these vulnerabilities.
A vulnerability was detected in UTT HiPER 810G up to 1.7.7-171114. Affected by this vulnerability is the function strcpy of the file /goform/formFireWall of the component Management Interface. The manipulation of the argument GroupName results in buffer overflow. The attack can be launched remotely. The exploit is now public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
A stack buffer overflow flaw was found in the Quick Emulator (QEMU) before 2.9 built with the Network Block Device (NBD) client support. The flaw could occur while processing server's response to a 'NBD_OPT_LIST' request. A malicious NBD server could use this issue to crash a remote NBD client resulting in DoS or potentially execute arbitrary code on client host with privileges of the QEMU process.
Multiple buffer overflows in the (1) SNMP and (2) License Manager implementations in Cisco NX-OS on Nexus 7000 devices 4.x and 5.x before 5.2(5) and 6.x before 6.1(1) and MDS 9000 devices 4.x and 5.x before 5.2(5) allow remote authenticated users to execute arbitrary code via a crafted SNMP request, aka Bug ID CSCtx54830.
Buffer overflow in the SNMP implementation in Cisco NX-OS on Nexus 7000 devices 4.x and 5.x before 5.2(5) and 6.x before 6.1(1) and MDS 9000 devices 4.x and 5.x before 5.2(5) allows remote authenticated users to execute arbitrary code via a crafted SNMP request, aka Bug ID CSCtx54822.
Multiple vulnerabilities in the web-based management interface of Cisco Small Business RV320 and RV325 Series Routers and Cisco Small Business RV016, RV042, and RV082 Routers could allow an authenticated, remote attacker with administrative privileges to execute arbitrary code on an affected device. The vulnerabilities are due to insufficient boundary restrictions on user-supplied input to scripts in the web-based management interface. An attacker with administrative privileges that are sufficient to log in to the web-based management interface could exploit each vulnerability by sending crafted requests that contain overly large values to an affected device, causing a stack overflow. A successful exploit could allow the attacker to cause the device to crash or allow the attacker to execute arbitrary code with root privileges on the underlying operating system.
Multiple vulnerabilities in the web-based management interface of Cisco Small Business RV320 and RV325 Series Routers and Cisco Small Business RV016, RV042, and RV082 Routers could allow an authenticated, remote attacker with administrative privileges to execute arbitrary code on an affected device. The vulnerabilities are due to insufficient boundary restrictions on user-supplied input to scripts in the web-based management interface. An attacker with administrative privileges that are sufficient to log in to the web-based management interface could exploit each vulnerability by sending crafted requests that contain overly large values to an affected device, causing a stack overflow. A successful exploit could allow the attacker to cause the device to crash or allow the attacker to execute arbitrary code with root privileges on the underlying operating system.
Multiple vulnerabilities in the web-based management interface of Cisco Small Business RV320 and RV325 Series Routers and Cisco Small Business RV016, RV042, and RV082 Routers could allow an authenticated, remote attacker with administrative privileges to execute arbitrary code on an affected device. The vulnerabilities are due to insufficient boundary restrictions on user-supplied input to scripts in the web-based management interface. An attacker with administrative privileges that are sufficient to log in to the web-based management interface could exploit each vulnerability by sending crafted requests that contain overly large values to an affected device, causing a stack overflow. A successful exploit could allow the attacker to cause the device to crash or allow the attacker to execute arbitrary code with root privileges on the underlying operating system.
Multiple vulnerabilities in the web-based management interface of Cisco Small Business RV320 and RV325 Series Routers and Cisco Small Business RV016, RV042, and RV082 Routers could allow an authenticated, remote attacker with administrative privileges to execute arbitrary code on an affected device. The vulnerabilities are due to insufficient boundary restrictions on user-supplied input to scripts in the web-based management interface. An attacker with administrative privileges that are sufficient to log in to the web-based management interface could exploit each vulnerability by sending crafted requests that contain overly large values to an affected device, causing a stack overflow. A successful exploit could allow the attacker to cause the device to crash or allow the attacker to execute arbitrary code with root privileges on the underlying operating system.
A Buffer Overflow issue was discovered in Asterisk Open Source 13 before 13.18.1, 14 before 14.7.1, and 15 before 15.1.1 and Certified Asterisk 13.13 before 13.13-cert7. No size checking is done when setting the user field for Party B on a CDR. Thus, it is possible for someone to use an arbitrarily large string and write past the end of the user field storage buffer. NOTE: this is different from CVE-2017-7617, which was only about the Party A buffer.
Multiple vulnerabilities in the web-based management interface of Cisco Small Business RV320 and RV325 Series Routers and Cisco Small Business RV016, RV042, and RV082 Routers could allow an authenticated, remote attacker with administrative privileges to execute arbitrary code on an affected device. The vulnerabilities are due to insufficient boundary restrictions on user-supplied input to scripts in the web-based management interface. An attacker with administrative privileges that are sufficient to log in to the web-based management interface could exploit each vulnerability by sending crafted requests that contain overly large values to an affected device, causing a stack overflow. A successful exploit could allow the attacker to cause the device to crash or allow the attacker to execute arbitrary code with root privileges on the underlying operating system.
Multiple vulnerabilities in the web-based management interface of Cisco Small Business RV320 and RV325 Series Routers and Cisco Small Business RV016, RV042, and RV082 Routers could allow an authenticated, remote attacker with administrative privileges to execute arbitrary code on an affected device. The vulnerabilities are due to insufficient boundary restrictions on user-supplied input to scripts in the web-based management interface. An attacker with administrative privileges that are sufficient to log in to the web-based management interface could exploit each vulnerability by sending crafted requests that contain overly large values to an affected device, causing a stack overflow. A successful exploit could allow the attacker to cause the device to crash or allow the attacker to execute arbitrary code with root privileges on the underlying operating system.
Multiple vulnerabilities in the web-based management interface of Cisco Small Business RV320 and RV325 Series Routers and Cisco Small Business RV016, RV042, and RV082 Routers could allow an authenticated, remote attacker with administrative privileges to execute arbitrary code on an affected device. The vulnerabilities are due to insufficient boundary restrictions on user-supplied input to scripts in the web-based management interface. An attacker with administrative privileges that are sufficient to log in to the web-based management interface could exploit each vulnerability by sending crafted requests that contain overly large values to an affected device, causing a stack overflow. A successful exploit could allow the attacker to cause the device to crash or allow the attacker to execute arbitrary code with root privileges on the underlying operating system.
An issue was discovered in Xen through 4.9.x. Grant copying code made an implication that any grant pin would be accompanied by a suitable page reference. Other portions of code, however, did not match up with that assumption. When such a grant copy operation is being done on a grant of a dying domain, the assumption turns out wrong. A malicious guest administrator can cause hypervisor memory corruption, most likely resulting in host crash and a Denial of Service. Privilege escalation and information leaks cannot be ruled out.
A vulnerability was determined in UTT 进取 520W 1.7.7-180627. The impacted element is the function strcpy of the file /goform/formConfigFastDirectionW. This manipulation of the argument ssid causes buffer overflow. Remote exploitation of the attack is possible. The exploit has been publicly disclosed and may be utilized. The vendor was contacted early about this disclosure but did not respond in any way.