Race condition in the vop_ioctl function in drivers/misc/mic/vop/vop_vringh.c in the MIC VOP driver in the Linux kernel before 4.6.1 allows local users to obtain sensitive information from kernel memory or cause a denial of service (memory corruption and system crash) by changing a certain header, aka a "double fetch" vulnerability.
Integer signedness error in the btrfs_ioctl_space_info function in the Linux kernel 2.6.37 allows local users to cause a denial of service (heap-based buffer overflow) or possibly have unspecified other impact via a crafted slot value.
Race condition in the sandbox launcher implementation in Google Chrome before 11.0.696.57 on Linux allows remote attackers to cause a denial of service or possibly have unspecified other impact via unknown vectors.
Race condition in Google Chrome before 11.0.696.57 on Linux and Mac OS X allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors related to linked lists and a database.
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: u_audio: Fix race condition use of controls after free during gadget unbind. Hang on to the control IDs instead of pointers since those are correctly handled with locks.
Race condition in arch/x86/kvm/x86.c in the Linux kernel before 2.6.38 allows L2 guest OS users to cause a denial of service (L1 guest OS crash) via a crafted instruction that triggers an L2 emulation failure report, a similar issue to CVE-2014-7842.
Race condition in the __exit_signal function in kernel/exit.c in the Linux kernel before 2.6.37-rc2 allows local users to cause a denial of service via vectors related to multithreaded exec, the use of a thread group leader in kernel/posix-cpu-timers.c, and the selection of a new thread group leader in the de_thread function in fs/exec.c.
Race condition in the sctp_icmp_proto_unreachable function in net/sctp/input.c in Linux kernel 2.6.11-rc2 through 2.6.33 allows remote attackers to cause a denial of service (panic) via an ICMP unreachable message to a socket that is already locked by a user, which causes the socket to be freed and triggers list corruption, related to the sctp_wait_for_connect function.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix uninit-value access in __ip_make_skb() KMSAN reported uninit-value access in __ip_make_skb() [1]. __ip_make_skb() tests HDRINCL to know if the skb has icmphdr. However, HDRINCL can cause a race condition. If calling setsockopt(2) with IP_HDRINCL changes HDRINCL while __ip_make_skb() is running, the function will access icmphdr in the skb even if it is not included. This causes the issue reported by KMSAN. Check FLOWI_FLAG_KNOWN_NH on fl4->flowi4_flags instead of testing HDRINCL on the socket. Also, fl4->fl4_icmp_type and fl4->fl4_icmp_code are not initialized. These are union in struct flowi4 and are implicitly initialized by flowi4_init_output(), but we should not rely on specific union layout. Initialize these explicitly in raw_sendmsg(). [1] BUG: KMSAN: uninit-value in __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481 __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481 ip_finish_skb include/net/ip.h:243 [inline] ip_push_pending_frames+0x4c/0x5c0 net/ipv4/ip_output.c:1508 raw_sendmsg+0x2381/0x2690 net/ipv4/raw.c:654 inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x274/0x3c0 net/socket.c:745 __sys_sendto+0x62c/0x7b0 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x130/0x200 net/socket.c:2199 do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x5f6/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13c/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35a/0x7c0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] __ip_append_data+0x49ab/0x68c0 net/ipv4/ip_output.c:1128 ip_append_data+0x1e7/0x260 net/ipv4/ip_output.c:1365 raw_sendmsg+0x22b1/0x2690 net/ipv4/raw.c:648 inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x274/0x3c0 net/socket.c:745 __sys_sendto+0x62c/0x7b0 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x130/0x200 net/socket.c:2199 do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 1 PID: 15709 Comm: syz-executor.7 Not tainted 6.8.0-11567-gb3603fcb79b1 #25 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014
Race condition in the mounting process in vmware-mount in VMware Workstation 7.x before 7.1.2 build 301548 on Linux, VMware Player 3.1.x before 3.1.2 build 301548 on Linux, VMware Server 2.0.2 on Linux, and VMware Fusion 3.1.x before 3.1.2 build 332101 allows host OS users to gain privileges via vectors involving temporary files.
In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: Fix use after free in lineinfo_changed_notify The use-after-free issue occurs as follows: when the GPIO chip device file is being closed by invoking gpio_chrdev_release(), watched_lines is freed by bitmap_free(), but the unregistration of lineinfo_changed_nb notifier chain failed due to waiting write rwsem. Additionally, one of the GPIO chip's lines is also in the release process and holds the notifier chain's read rwsem. Consequently, a race condition leads to the use-after-free of watched_lines. Here is the typical stack when issue happened: [free] gpio_chrdev_release() --> bitmap_free(cdev->watched_lines) <-- freed --> blocking_notifier_chain_unregister() --> down_write(&nh->rwsem) <-- waiting rwsem --> __down_write_common() --> rwsem_down_write_slowpath() --> schedule_preempt_disabled() --> schedule() [use] st54spi_gpio_dev_release() --> gpio_free() --> gpiod_free() --> gpiod_free_commit() --> gpiod_line_state_notify() --> blocking_notifier_call_chain() --> down_read(&nh->rwsem); <-- held rwsem --> notifier_call_chain() --> lineinfo_changed_notify() --> test_bit(xxxx, cdev->watched_lines) <-- use after free The side effect of the use-after-free issue is that a GPIO line event is being generated for userspace where it shouldn't. However, since the chrdev is being closed, userspace won't have the chance to read that event anyway. To fix the issue, call the bitmap_free() function after the unregistration of lineinfo_changed_nb notifier chain.
In the Linux kernel before 4.9.3, fs/xfs/xfs_aops.c allows local users to cause a denial of service (system crash) because there is a race condition between direct and memory-mapped I/O (associated with a hole) that is handled with BUG_ON instead of an I/O failure.
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: flush pending destroy work before exit_net release Similar to 2c9f0293280e ("netfilter: nf_tables: flush pending destroy work before netlink notifier") to address a race between exit_net and the destroy workqueue. The trace below shows an element to be released via destroy workqueue while exit_net path (triggered via module removal) has already released the set that is used in such transaction. [ 1360.547789] BUG: KASAN: slab-use-after-free in nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.547861] Read of size 8 at addr ffff888140500cc0 by task kworker/4:1/152465 [ 1360.547870] CPU: 4 PID: 152465 Comm: kworker/4:1 Not tainted 6.8.0+ #359 [ 1360.547882] Workqueue: events nf_tables_trans_destroy_work [nf_tables] [ 1360.547984] Call Trace: [ 1360.547991] <TASK> [ 1360.547998] dump_stack_lvl+0x53/0x70 [ 1360.548014] print_report+0xc4/0x610 [ 1360.548026] ? __virt_addr_valid+0xba/0x160 [ 1360.548040] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 1360.548054] ? nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.548176] kasan_report+0xae/0xe0 [ 1360.548189] ? nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.548312] nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.548447] ? __pfx_nf_tables_trans_destroy_work+0x10/0x10 [nf_tables] [ 1360.548577] ? _raw_spin_unlock_irq+0x18/0x30 [ 1360.548591] process_one_work+0x2f1/0x670 [ 1360.548610] worker_thread+0x4d3/0x760 [ 1360.548627] ? __pfx_worker_thread+0x10/0x10 [ 1360.548640] kthread+0x16b/0x1b0 [ 1360.548653] ? __pfx_kthread+0x10/0x10 [ 1360.548665] ret_from_fork+0x2f/0x50 [ 1360.548679] ? __pfx_kthread+0x10/0x10 [ 1360.548690] ret_from_fork_asm+0x1a/0x30 [ 1360.548707] </TASK> [ 1360.548719] Allocated by task 192061: [ 1360.548726] kasan_save_stack+0x20/0x40 [ 1360.548739] kasan_save_track+0x14/0x30 [ 1360.548750] __kasan_kmalloc+0x8f/0xa0 [ 1360.548760] __kmalloc_node+0x1f1/0x450 [ 1360.548771] nf_tables_newset+0x10c7/0x1b50 [nf_tables] [ 1360.548883] nfnetlink_rcv_batch+0xbc4/0xdc0 [nfnetlink] [ 1360.548909] nfnetlink_rcv+0x1a8/0x1e0 [nfnetlink] [ 1360.548927] netlink_unicast+0x367/0x4f0 [ 1360.548935] netlink_sendmsg+0x34b/0x610 [ 1360.548944] ____sys_sendmsg+0x4d4/0x510 [ 1360.548953] ___sys_sendmsg+0xc9/0x120 [ 1360.548961] __sys_sendmsg+0xbe/0x140 [ 1360.548971] do_syscall_64+0x55/0x120 [ 1360.548982] entry_SYSCALL_64_after_hwframe+0x55/0x5d [ 1360.548994] Freed by task 192222: [ 1360.548999] kasan_save_stack+0x20/0x40 [ 1360.549009] kasan_save_track+0x14/0x30 [ 1360.549019] kasan_save_free_info+0x3b/0x60 [ 1360.549028] poison_slab_object+0x100/0x180 [ 1360.549036] __kasan_slab_free+0x14/0x30 [ 1360.549042] kfree+0xb6/0x260 [ 1360.549049] __nft_release_table+0x473/0x6a0 [nf_tables] [ 1360.549131] nf_tables_exit_net+0x170/0x240 [nf_tables] [ 1360.549221] ops_exit_list+0x50/0xa0 [ 1360.549229] free_exit_list+0x101/0x140 [ 1360.549236] unregister_pernet_operations+0x107/0x160 [ 1360.549245] unregister_pernet_subsys+0x1c/0x30 [ 1360.549254] nf_tables_module_exit+0x43/0x80 [nf_tables] [ 1360.549345] __do_sys_delete_module+0x253/0x370 [ 1360.549352] do_syscall_64+0x55/0x120 [ 1360.549360] entry_SYSCALL_64_after_hwframe+0x55/0x5d (gdb) list *__nft_release_table+0x473 0x1e033 is in __nft_release_table (net/netfilter/nf_tables_api.c:11354). 11349 list_for_each_entry_safe(flowtable, nf, &table->flowtables, list) { 11350 list_del(&flowtable->list); 11351 nft_use_dec(&table->use); 11352 nf_tables_flowtable_destroy(flowtable); 11353 } 11354 list_for_each_entry_safe(set, ns, &table->sets, list) { 11355 list_del(&set->list); 11356 nft_use_dec(&table->use); 11357 if (set->flags & (NFT_SET_MAP | NFT_SET_OBJECT)) 11358 nft_map_deactivat ---truncated---
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_flowtable_type_get() nft_unregister_flowtable_type() within nf_flow_inet_module_exit() can concurrent with __nft_flowtable_type_get() within nf_tables_newflowtable(). And thhere is not any protection when iterate over nf_tables_flowtables list in __nft_flowtable_type_get(). Therefore, there is pertential data-race of nf_tables_flowtables list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_flowtables list in __nft_flowtable_type_get(), and use rcu_read_lock() in the caller nft_flowtable_type_get() to protect the entire type query process.
In net/socket.c in the Linux kernel through 4.17.1, there is a race condition between fchownat and close in cases where they target the same socket file descriptor, related to the sock_close and sockfs_setattr functions. fchownat does not increment the file descriptor reference count, which allows close to set the socket to NULL during fchownat's execution, leading to a NULL pointer dereference and system crash.
In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_ec_uart: properly fix race condition The cros_ec_uart_probe() function calls devm_serdev_device_open() before it calls serdev_device_set_client_ops(). This can trigger a NULL pointer dereference: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... Call Trace: <TASK> ... ? ttyport_receive_buf A simplified version of crashing code is as follows: static inline size_t serdev_controller_receive_buf(struct serdev_controller *ctrl, const u8 *data, size_t count) { struct serdev_device *serdev = ctrl->serdev; if (!serdev || !serdev->ops->receive_buf) // CRASH! return 0; return serdev->ops->receive_buf(serdev, data, count); } It assumes that if SERPORT_ACTIVE is set and serdev exists, serdev->ops will also exist. This conflicts with the existing cros_ec_uart_probe() logic, as it first calls devm_serdev_device_open() (which sets SERPORT_ACTIVE), and only later sets serdev->ops via serdev_device_set_client_ops(). Commit 01f95d42b8f4 ("platform/chrome: cros_ec_uart: fix race condition") attempted to fix a similar race condition, but while doing so, made the window of error for this race condition to happen much wider. Attempt to fix the race condition again, making sure we fully setup before calling devm_serdev_device_open().
Race condition in the hvc_close function in drivers/char/hvc_console.c in the Linux kernel before 2.6.34 allows local users to cause a denial of service or possibly have unspecified other impact by closing a Hypervisor Virtual Console device, related to the hvc_open and hvc_remove functions.
Race condition in the find_keyring_by_name function in security/keys/keyring.c in the Linux kernel 2.6.34-rc5 and earlier allows local users to cause a denial of service (memory corruption and system crash) or possibly have unspecified other impact via keyctl session commands that trigger access to a dead keyring that is undergoing deletion by the key_cleanup function.
Race condition in the tty_fasync function in drivers/char/tty_io.c in the Linux kernel before 2.6.32.6 allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via unknown vectors, related to the put_tty_queue and __f_setown functions. NOTE: the vulnerability was addressed in a different way in 2.6.32.9.
Race condition in the mac80211 subsystem in the Linux kernel before 2.6.32-rc8-next-20091201 allows remote attackers to cause a denial of service (system crash) via a Delete Block ACK (aka DELBA) packet that triggers a certain state change in the absence of an aggregation session.
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_fs: Fix race between aio_cancel() and AIO request complete FFS based applications can utilize the aio_cancel() callback to dequeue pending USB requests submitted to the UDC. There is a scenario where the FFS application issues an AIO cancel call, while the UDC is handling a soft disconnect. For a DWC3 based implementation, the callstack looks like the following: DWC3 Gadget FFS Application dwc3_gadget_soft_disconnect() ... --> dwc3_stop_active_transfers() --> dwc3_gadget_giveback(-ESHUTDOWN) --> ffs_epfile_async_io_complete() ffs_aio_cancel() --> usb_ep_free_request() --> usb_ep_dequeue() There is currently no locking implemented between the AIO completion handler and AIO cancel, so the issue occurs if the completion routine is running in parallel to an AIO cancel call coming from the FFS application. As the completion call frees the USB request (io_data->req) the FFS application is also referencing it for the usb_ep_dequeue() call. This can lead to accessing a stale/hanging pointer. commit b566d38857fc ("usb: gadget: f_fs: use io_data->status consistently") relocated the usb_ep_free_request() into ffs_epfile_async_io_complete(). However, in order to properly implement locking to mitigate this issue, the spinlock can't be added to ffs_epfile_async_io_complete(), as usb_ep_dequeue() (if successfully dequeuing a USB request) will call the function driver's completion handler in the same context. Hence, leading into a deadlock. Fix this issue by moving the usb_ep_free_request() back to ffs_user_copy_worker(), and ensuring that it explicitly sets io_data->req to NULL after freeing it within the ffs->eps_lock. This resolves the race condition above, as the ffs_aio_cancel() routine will not continue attempting to dequeue a request that has already been freed, or the ffs_user_copy_work() not freeing the USB request until the AIO cancel is done referencing it. This fix depends on commit b566d38857fc ("usb: gadget: f_fs: use io_data->status consistently")
Multiple race conditions in fs/pipe.c in the Linux kernel before 2.6.32-rc6 allow local users to cause a denial of service (NULL pointer dereference and system crash) or gain privileges by attempting to open an anonymous pipe via a /proc/*/fd/ pathname.
An issue was discovered in the Linux kernel through 6.2.0-rc2. drivers/tty/vcc.c has a race condition and resultant use-after-free if a physically proximate attacker removes a VCC device while calling open(), aka a race condition between vcc_open() and vcc_remove().
The Linux kernel through 3.14.5 does not properly consider the presence of hugetlb entries, which allows local users to cause a denial of service (memory corruption or system crash) by accessing certain memory locations, as demonstrated by triggering a race condition via numa_maps read operations during hugepage migration, related to fs/proc/task_mmu.c and mm/mempolicy.c.
Race condition in some Intel(R) Aptio* V UEFI Firmware Integrator Tools may allow an authenticated user to potentially enable denial of service via local access.
Race condition in kernel/events/core.c in the Linux kernel before 4.9.7 allows local users to gain privileges via a crafted application that makes concurrent perf_event_open system calls for moving a software group into a hardware context. NOTE: this vulnerability exists because of an incomplete fix for CVE-2016-6786.
A race problem was found in fs/proc/task_mmu.c in the memory management sub-component in the Linux kernel. This issue may allow a local attacker with user privilege to cause a denial of service.
A race condition was found in the Linux kernel's RxRPC network protocol, within the processing of RxRPC bundles. This issue results from the lack of proper locking when performing operations on an object. This may allow an attacker to escalate privileges and execute arbitrary code in the context of the kernel.
Race condition in the ptrace_attach function in kernel/ptrace.c in the Linux kernel before 2.6.30-rc4 allows local users to gain privileges via a PTRACE_ATTACH ptrace call during an exec system call that is launching a setuid application, related to locking an incorrect cred_exec_mutex object.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix a data-race around sysctl_fib_sync_mem. While reading sysctl_fib_sync_mem, it can be changed concurrently. So, we need to add READ_ONCE() to avoid a data-race.
In the Linux kernel, the following vulnerability has been resolved: raw: Fix a data-race around sysctl_raw_l3mdev_accept. While reading sysctl_raw_l3mdev_accept, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: icmp: Fix data-races around sysctl_icmp_echo_enable_probe. While reading sysctl_icmp_echo_enable_probe, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: cipso: Fix data-races around sysctl. While reading cipso sysctl variables, they can be changed concurrently. So, we need to add READ_ONCE() to avoid data-races.
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: release flow rule object from commit path No need to postpone this to the commit release path, since no packets are walking over this object, this is accessed from control plane only. This helped uncovered UAF triggered by races with the netlink notifier.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_ecn_fallback. While reading sysctl_tcp_ecn_fallback, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: igmp: Fix data-races around sysctl_igmp_llm_reports. While reading sysctl_igmp_llm_reports, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. This test can be packed into a helper, so such changes will be in the follow-up series after net is merged into net-next. if (ipv4_is_local_multicast(pmc->multiaddr) && !READ_ONCE(net->ipv4.sysctl_igmp_llm_reports))
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_notsent_lowat. While reading sysctl_tcp_notsent_lowat, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dp: do not complete dp_aux_cmd_fifo_tx() if irq is not for aux transfer There are 3 possible interrupt sources are handled by DP controller, HPDstatus, Controller state changes and Aux read/write transaction. At every irq, DP controller have to check isr status of every interrupt sources and service the interrupt if its isr status bits shows interrupts are pending. There is potential race condition may happen at current aux isr handler implementation since it is always complete dp_aux_cmd_fifo_tx() even irq is not for aux read or write transaction. This may cause aux read transaction return premature if host aux data read is in the middle of waiting for sink to complete transferring data to host while irq happen. This will cause host's receiving buffer contains unexpected data. This patch fixes this problem by checking aux isr and return immediately at aux isr handler if there are no any isr status bits set. Current there is a bug report regrading eDP edid corruption happen during system booting up. After lengthy debugging to found that VIDEO_READY interrupt was continuously firing during system booting up which cause dp_aux_isr() to complete dp_aux_cmd_fifo_tx() prematurely to retrieve data from aux hardware buffer which is not yet contains complete data transfer from sink. This cause edid corruption. Follows are the signature at kernel logs when problem happen, EDID has corrupt header panel-simple-dp-aux aux-aea0000.edp: Couldn't identify panel via EDID Changes in v2: -- do complete if (ret == IRQ_HANDLED) ay dp-aux_isr() -- add more commit text Changes in v3: -- add Stephen suggested -- dp_aux_isr() return IRQ_XXX back to caller -- dp_ctrl_isr() return IRQ_XXX back to caller Changes in v4: -- split into two patches Changes in v5: -- delete empty line between tags Changes in v6: -- remove extra "that" and fixed line more than 75 char at commit text Patchwork: https://patchwork.freedesktop.org/patch/516121/
In the Linux kernel, the following vulnerability has been resolved: ip: Fix a data-race around sysctl_fwmark_reflect. While reading sysctl_fwmark_reflect, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_slow_start_after_idle. While reading sysctl_tcp_slow_start_after_idle, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_recovery. While reading sysctl_tcp_recovery, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp/dccp: Fix a data-race around sysctl_tcp_fwmark_accept. While reading sysctl_tcp_fwmark_accept, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_l3mdev_accept. While reading sysctl_tcp_l3mdev_accept, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix data-races around sysctl_fib_multipath_hash_fields. While reading sysctl_fib_multipath_hash_fields, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix data-races around sysctl_ip_fwd_update_priority. While reading sysctl_ip_fwd_update_priority, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ice: Fix race condition during interface enslave Commit 5dbbbd01cbba83 ("ice: Avoid RTNL lock when re-creating auxiliary device") changes a process of re-creation of aux device so ice_plug_aux_dev() is called from ice_service_task() context. This unfortunately opens a race window that can result in dead-lock when interface has left LAG and immediately enters LAG again. Reproducer: ``` #!/bin/sh ip link add lag0 type bond mode 1 miimon 100 ip link set lag0 for n in {1..10}; do echo Cycle: $n ip link set ens7f0 master lag0 sleep 1 ip link set ens7f0 nomaster done ``` This results in: [20976.208697] Workqueue: ice ice_service_task [ice] [20976.213422] Call Trace: [20976.215871] __schedule+0x2d1/0x830 [20976.219364] schedule+0x35/0xa0 [20976.222510] schedule_preempt_disabled+0xa/0x10 [20976.227043] __mutex_lock.isra.7+0x310/0x420 [20976.235071] enum_all_gids_of_dev_cb+0x1c/0x100 [ib_core] [20976.251215] ib_enum_roce_netdev+0xa4/0xe0 [ib_core] [20976.256192] ib_cache_setup_one+0x33/0xa0 [ib_core] [20976.261079] ib_register_device+0x40d/0x580 [ib_core] [20976.266139] irdma_ib_register_device+0x129/0x250 [irdma] [20976.281409] irdma_probe+0x2c1/0x360 [irdma] [20976.285691] auxiliary_bus_probe+0x45/0x70 [20976.289790] really_probe+0x1f2/0x480 [20976.298509] driver_probe_device+0x49/0xc0 [20976.302609] bus_for_each_drv+0x79/0xc0 [20976.306448] __device_attach+0xdc/0x160 [20976.310286] bus_probe_device+0x9d/0xb0 [20976.314128] device_add+0x43c/0x890 [20976.321287] __auxiliary_device_add+0x43/0x60 [20976.325644] ice_plug_aux_dev+0xb2/0x100 [ice] [20976.330109] ice_service_task+0xd0c/0xed0 [ice] [20976.342591] process_one_work+0x1a7/0x360 [20976.350536] worker_thread+0x30/0x390 [20976.358128] kthread+0x10a/0x120 [20976.365547] ret_from_fork+0x1f/0x40 ... [20976.438030] task:ip state:D stack: 0 pid:213658 ppid:213627 flags:0x00004084 [20976.446469] Call Trace: [20976.448921] __schedule+0x2d1/0x830 [20976.452414] schedule+0x35/0xa0 [20976.455559] schedule_preempt_disabled+0xa/0x10 [20976.460090] __mutex_lock.isra.7+0x310/0x420 [20976.464364] device_del+0x36/0x3c0 [20976.467772] ice_unplug_aux_dev+0x1a/0x40 [ice] [20976.472313] ice_lag_event_handler+0x2a2/0x520 [ice] [20976.477288] notifier_call_chain+0x47/0x70 [20976.481386] __netdev_upper_dev_link+0x18b/0x280 [20976.489845] bond_enslave+0xe05/0x1790 [bonding] [20976.494475] do_setlink+0x336/0xf50 [20976.502517] __rtnl_newlink+0x529/0x8b0 [20976.543441] rtnl_newlink+0x43/0x60 [20976.546934] rtnetlink_rcv_msg+0x2b1/0x360 [20976.559238] netlink_rcv_skb+0x4c/0x120 [20976.563079] netlink_unicast+0x196/0x230 [20976.567005] netlink_sendmsg+0x204/0x3d0 [20976.570930] sock_sendmsg+0x4c/0x50 [20976.574423] ____sys_sendmsg+0x1eb/0x250 [20976.586807] ___sys_sendmsg+0x7c/0xc0 [20976.606353] __sys_sendmsg+0x57/0xa0 [20976.609930] do_syscall_64+0x5b/0x1a0 [20976.613598] entry_SYSCALL_64_after_hwframe+0x65/0xca 1. Command 'ip link ... set nomaster' causes that ice_plug_aux_dev() is called from ice_service_task() context, aux device is created and associated device->lock is taken. 2. Command 'ip link ... set master...' calls ice's notifier under RTNL lock and that notifier calls ice_unplug_aux_dev(). That function tries to take aux device->lock but this is already taken by ice_plug_aux_dev() in step 1 3. Later ice_plug_aux_dev() tries to take RTNL lock but this is already taken in step 2 4. Dead-lock The patch fixes this issue by following changes: - Bit ICE_FLAG_PLUG_AUX_DEV is kept to be set during ice_plug_aux_dev() call in ice_service_task() - The bit is checked in ice_clear_rdma_cap() and only if it is not set then ice_unplug_aux_dev() is called. If it is set (in other words plugging of aux device was requested and ice_plug_aux_dev() is potentially running) then the function only clears the ---truncated---
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_probe_interval. While reading sysctl_tcp_probe_interval, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix data-races around sysctl_ip_fwd_use_pmtu. While reading sysctl_ip_fwd_use_pmtu, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_mtu_probing. While reading sysctl_tcp_mtu_probing, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix data-races around sysctl_fib_multipath_hash_policy. While reading sysctl_fib_multipath_hash_policy, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.