An issue was discovered in Bento4 1.5.1.0. A memory allocation failure is unhandled in Core/Ap4SdpAtom.cpp and leads to crashes. When parsing input video, the program allocates a new buffer to parse an atom in the stream. The unhandled memory allocation failure causes a direct copy to a NULL pointer.
An issue was discovered in Bento4 version 06c39d9. A NULL pointer dereference exists in the AP4_Stz2Atom::GetSampleSize component located in /Core/Ap4Stz2Atom.cpp. It allows an attacker to cause a denial of service (DOS).
An issue was discovered in Bento4 version 06c39d9. A NULL pointer dereference exists in the AP4_DescriptorListWriter::Action component located in /Core/Ap4Descriptor.h. It allows an attacker to cause a denial of service (DOS).
An issue was discovered in Bento4 v1.5.1-627. There is a memory leak in AP4_DescriptorFactory::CreateDescriptorFromStream in Core/Ap4DescriptorFactory.cpp when called from the AP4_EsdsAtom class in Core/Ap4EsdsAtom.cpp, as demonstrated by mp42aac.
The AP4_AvccAtom and AP4_HvccAtom classes in Bento4 version 1.5.0-617 do not properly validate data sizes, leading to a heap-based buffer over-read and application crash in AP4_DataBuffer::SetData in Core/Ap4DataBuffer.cpp.
In Bento4 1.6.0-638, there is an allocator is out of memory in the function AP4_Array<AP4_TrunAtom::Entry>::EnsureCapacity in Ap4Array.h:172, as demonstrated by GPAC. This can cause a denial of service (DOS).
An issue has been found in Bento4 1.5.1-624. It is a SEGV in AP4_StcoAtom::AdjustChunkOffsets in Core/Ap4StcoAtom.cpp.
An issue has been found in Bento4 1.5.1-624. It is a SEGV in AP4_StszAtom::GetSampleSize in Core/Ap4StszAtom.cpp.
An issue has been discovered in Bento4 1.5.1-624. A SEGV can occur in AP4_Processor::ProcessFragments in Core/Ap4Processor.cpp.
The AP4_CttsAtom class in Core/Ap4CttsAtom.cpp in Bento4 1.5.1.0 allows remote attackers to cause a denial of service (application crash), related to a memory allocation failure, as demonstrated by mp2aac.
A heap-based buffer overflow exists in the AP4_StdcFileByteStream::ReadPartial component located in /StdC/Ap4StdCFileByteStream.cpp of Bento4 version 06c39d9. This issue can lead to a denial of service (DOS).
A WRITE memory access in the AP4_NullTerminatedStringAtom::AP4_NullTerminatedStringAtom component of Bento4 version 06c39d9 can lead to a segmentation fault.
A heap-based buffer overflow exists in the AP4_CttsAtom::AP4_CttsAtom component located in /Core/Ap4Utils.h of Bento4 version 06c39d9. This can lead to a denial of service (DOS).
In Bento4 1.6.0-638, there is a null pointer reference in the function AP4_DescriptorListInspector::Action function in Ap4Descriptor.h:124 , as demonstrated by GPAC. This can cause a denial of service (DOS).
An issue was discovered in Bento4 through v1.6.0-636. A NULL pointer dereference exists in the function AP4_StszAtom::WriteFields located in Ap4StszAtom.cpp. It allows an attacker to cause a denial of service (DOS).
Bento4 v1.6.0-640 was discovered to contain a NULL pointer dereference via the AP4_StszAtom::GetSampleSize() function.
Bento4 v1.6.0-640 was discovered to contain a NULL pointer dereference via the AP4_DescriptorFinder::Test() function.
The AP4_Processor::Process function in Core/Ap4Processor.cpp in Bento4 mp4encrypt before 1.5.0-616 allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a crafted mp4 file.
An issue was discovered in Bento4 1.5.1.0. There is a NULL pointer dereference in AP4_Descriptor::GetTag in mp42ts when called from AP4_DecoderConfigDescriptor::GetDecoderSpecificInfoDescriptor in Ap4DecoderConfigDescriptor.cpp.
An issue was discovered in Bento4 1.5.1.0. There is a NULL pointer dereference in AP4_Descriptor::GetTag in mp42ts when called from AP4_EsDescriptor::GetDecoderConfigDescriptor in Ap4EsDescriptor.cpp.
Bento4 1.5.1.0 has a NULL pointer dereference in AP4_DescriptorListWriter::Action in Core/Ap4Descriptor.h, related to AP4_IodsAtom::WriteFields in Core/Ap4IodsAtom.cpp, as demonstrated by mp4encrypt or mp4compact.
Bento4 1.5.1.0 has a NULL pointer dereference in AP4_Descriptor::GetTag in Core/Ap4Descriptor.h, related to AP4_StsdAtom::GetSampleDescription in Core/Ap4StsdAtom.cpp, as demonstrated by mp4info.
Bento4 1.5.1.0 has a NULL pointer dereference in AP4_DescriptorListInspector::Action in Core/Ap4Descriptor.h, related to AP4_IodsAtom::InspectFields in Core/Ap4IodsAtom.cpp, as demonstrated by mp4dump.
Bento4 1.5.1-628 has a NULL pointer dereference in AP4_ByteStream::ReadUI32 in Core/Ap4ByteStream.cpp when called from the AP4_TrunAtom class.
In Bento4 1.5.1-627, AP4_DataBuffer::SetDataSize does not handle reallocation failures, leading to a memory copy into a NULL pointer. This is different from CVE-2018-20186.
There exists one NULL pointer dereference vulnerability in AP4_JsonInspector::AddField in Ap4Atom.cpp in Bento4 1.5.1-624, which can allow attackers to cause a denial-of-service via a crafted mp4 file. This vulnerability can be triggered by the executable mp4dump.
An issue was discovered in Bento4 through 1.6.0-639. A NULL pointer dereference occurs in AP4_File::ParseStream in Core/Ap4File.cpp, which is called from AP4_File::AP4_File.
An issue was discovered in Bento4 through 1.6.0-639. There is a NULL pointer dereference in AP4_StszAtom::GetSampleSize.
An issue was discovered in Bento4 through 1.6.0-639. A NULL pointer dereference occurs in AP4_StszAtom::WriteFields.
A vulnerability was found in Axiomatic Bento4. It has been rated as problematic. This issue affects the function AP4_StsdAtom of the file Ap4StsdAtom.cpp of the component MP4fragment. The manipulation leads to null pointer dereference. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-212003.
An issue was discovered in Bento4 through v1.6.0-637. A NULL pointer dereference exists in the function AP4_StszAtom::GetSampleSize() located in Ap4StszAtom.cpp. It allows an attacker to cause Denial of Service.
An unhandled memory allocation failure in Core/Ap48bdlAtom.cpp of Bento 1.5.1-628 causes a NULL pointer dereference, leading to a denial of service (DOS).
An unhandled memory allocation failure in Core/AP4IkmsAtom.cpp of Bento 1.5.1-628 causes a NULL pointer dereference, leading to a denial of service (DOS).
An unhandled memory allocation failure in Core/Ap4Atom.cpp of Bento 1.5.1-628 causes a direct copy to NULL pointer dereference, leading to a denial of service (DOS).
An unhandled memory allocation failure in Core/Ap4Atom.cpp of Bento 1.5.1-628 causes a NULL pointer dereference, leading to a denial of service (DOS).
An issue was discovered in Bento4 1.5.1-628. A NULL pointer dereference occurs in AP4_Track::GetSampleIndexForTimeStampMs() located in Core/Ap4Track.cpp. It can triggered by sending a crafted file to the mp4audioclip binary. It allows an attacker to cause a Denial of Service (Segmentation fault) or possibly have unspecified other impact.
An issue was discovered in Bento4 1.5.1-628. A NULL pointer dereference occurs in the function AP4_List:Find located in Core/Ap4List.h when called from Core/Ap4Movie.cpp. It can be triggered by sending a crafted file to the mp4dump binary. It allows an attacker to cause a Denial of Service (Segmentation fault) or possibly have unspecified other impact.
An issue was discovered in Bento4 through 1.6.0-639. A NULL pointer dereference occurs in AP4_DescriptorListWriter::Action in Core/Ap4Descriptor.h, called from AP4_EsDescriptor::WriteFields and AP4_Expandable::Write.
An issue was discovered in Bento4 through v1.6.0-636. A NULL pointer dereference exists in the AP4_DescriptorFinder::Test component located in /Core/Ap4Descriptor.h. It allows an attacker to cause a denial of service (DOS).
In Wireshark 2.2.0 to 2.2.6 and 2.0.0 to 2.0.12, the MSNIP dissector misuses a NULL pointer. This was addressed in epan/dissectors/packet-msnip.c by validating an IPv4 address.
In Wireshark 2.2.0 to 2.2.6, the ROS dissector could crash with a NULL pointer dereference. This was addressed in epan/dissectors/asn1/ros/packet-ros-template.c by validating an OID.
The Binary File Descriptor (BFD) library (aka libbfd), as distributed in GNU Binutils 2.28, is vulnerable to an invalid write of size 8 because of missing a malloc() return-value check to see if memory had actually been allocated in the _bfd_generic_get_section_contents function. This vulnerability causes programs that conduct an analysis of binary programs using the libbfd library, such as objcopy, to crash.
A null dereference vulnerability has been found in the MIME handling component of LibEtPan before 1.8, as used in MailCore and MailCore 2. A crash can occur in low-level/imf/mailimf.c during a failed parse of a Cc header containing multiple e-mail addresses.
In Tor before 0.2.5.16, 0.2.6 through 0.2.8 before 0.2.8.17, 0.2.9 before 0.2.9.14, 0.3.0 before 0.3.0.13, and 0.3.1 before 0.3.1.9, remote attackers can cause a denial of service (NULL pointer dereference and application crash) against directory authorities via a malformed descriptor, aka TROVE-2017-010.
A NULL pointer dereference in CS104_IPAddress_setFromString at src/iec60870/cs104/cs104_slave.c of lib60870 commit 0d5e76e can lead to a segmentation fault or application crash.
The Binary File Descriptor (BFD) library (aka libbfd), as distributed in GNU Binutils 2.28, is vulnerable to an invalid read of size 4 due to NULL pointer dereferencing of _bfd_elf_large_com_section. This vulnerability causes programs that conduct an analysis of binary programs using the libbfd library, such as objcopy, to crash.
The lexer_process_char_literal function in jerry-core/parser/js/js-lexer.c in JerryScript 1.0 does not skip memory allocation for empty strings, which allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via malformed JavaScript source code, related to the jmem_heap_free_block function.
An issue was discovered in Oniguruma 6.2.0, as used in Oniguruma-mod in Ruby through 2.4.1 and mbstring in PHP through 7.1.5. A SIGSEGV occurs in left_adjust_char_head() during regular expression compilation. Invalid handling of reg->dmax in forward_search_range() could result in an invalid pointer dereference, normally as an immediate denial-of-service condition.
Null pointer dereference vulnerability in NSS since 3.24.0 was found when server receives empty SSLv2 messages resulting into denial of service by remote attacker.
The Binary File Descriptor (BFD) library (aka libbfd), as distributed in GNU Binutils 2.28, is vulnerable to an invalid read of size 8 because of missing a check to determine whether symbols are NULL in the _bfd_dwarf2_find_nearest_line function. This vulnerability causes programs that conduct an analysis of binary programs using the libbfd library, such as objdump, to crash.