This issue was addressed with improved checks. This issue affected versions prior to iOS 12, macOS Mojave 10.14, tvOS 12, watchOS 5.
Triangle MicroWorks SCADA Data Gateway before 3.00.0635 allows physically proximate attackers to cause a denial of service (excessive data processing) via a crafted DNP request over a serial line.
Linux kernel 2.6 and 2.4 on the IA64 architecture allows local users to cause a denial of service (kernel crash) via ptrace and the restore_sigcontext function.
The Meeting component in Huawei eSpace Desktop before V100R001C03 allows local users to cause a denial of service (program exit) via a crafted image.
Remote Desktop in Windows XP SP1 does not verify the "Force shutdown from a remote system" setting, which allows remote attackers to shut down the system by executing TSShutdn.exe.
NVIDIA GPU Display Driver for Windows and Linux, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape or IOCTL in which improper validation of a user pointer may lead to denial of service.
NVIDIA vGPU manager contains a vulnerability in the vGPU plugin, in which input data is not validated, which may lead to unexpected consumption of resources, which in turn may lead to denial of service. This affects vGPU version 8.x (prior to 8.6) and version 11.0 (prior to 11.3).
In Vectura Perfect Privacy VPN Manager v1.10.10 and v1.10.11, when resetting the network data via the software client, with a running VPN connection, a critical error occurs which leads to a "FrmAdvancedProtection" crash. Although the mechanism malfunctions and an error occurs during the runtime with the stack trace being issued, the software process is not properly terminated. The software client is still attempting to maintain the connection even though the network connection information is being reset live. In that insecure mode, the "FrmAdvancedProtection" component crashes, but the process continues to run with different errors and process corruptions. This local corruption vulnerability can be exploited by local attackers.
Improper Validation of Specified Index, Position, or Offset in Input in firmware for some Intel(R) PROSet/Wireless Wi-Fi in multiple operating systems and some Killer(TM) Wi-Fi in Windows 10 and 11 may allow a privileged user to potentially enable denial of service via local access.
Improper input validation in firmware for some Intel(R) PROSet/Wireless Wi-Fi in multiple operating systems and some Killer(TM) Wi-Fi in Windows 10 and 11 may allow a privileged user to potentially enable denial of service via local access.
Improper input validation in the Intel(R) SPS versions before SPS_E5_04.04.04.023.0, SPS_E5_04.04.03.228.0 or SPS_SoC-A_05.00.03.098.0 may allow a privileged user to potentially enable denial of service via local access.
A validation issue was addressed with improved input sanitization. This issue is fixed in iOS 13.5 and iPadOS 13.5, macOS Catalina 10.15.5. A USB device may be able to cause a denial of service.
PCManFM 1.2.5 insecurely uses /tmp for a socket file, allowing a local user to cause a denial of service (application unavailability).
Insufficient Input validation in the subsystem for Intel(R) CSME before versions 12.0.45,13.0.10 and 14.0.10 may allow a privileged user to potentially enable denial of service via local access.
For the Central Licensing Server component used in ABB products ABB Ability™ System 800xA and related system extensions versions 5.1, 6.0 and 6.1, Compact HMI versions 5.1 and 6.0, Control Builder Safe 1.0, 1.1 and 2.0, Symphony Plus -S+ Operations 3.0 to 3.2 Symphony Plus -S+ Engineering 1.1 to 2.2, Composer Harmony 5.1, 6.0 and 6.1, Melody Composer 5.3, 6.1/6.2 and SPE for Melody 1.0SPx (Composer 6.3), Harmony OPC Server (HAOPC) Standalone 6.0, 6.1 and 7.0, ABB Ability™ System 800xA/ Advant® OCS Control Builder A 1.3 and 1.4, Advant® OCS AC100 OPC Server 5.1, 6.0 and 6.1, Composer CTK 6.1 and 6.2, AdvaBuild 3.7 SP1 and SP2, OPCServer for MOD 300 (non-800xA) 1.4, OPC Data Link 2.1 and 2.2, Knowledge Manager 8.0, 9.0 and 9.1, Manufacturing Operations Management 1812 and 1909, ABB AbilityTM SCADAvantage versions 5.1 to 5.6.5, a weakness in validation of input exists that allows an attacker to block license handling by sending specially crafted messages to the CLS web service.
Improper input validation in a subsystem for some Intel Server Boards, Server Systems and Compute Modules before version 1.59 may allow an authenticated user to potentially enable denial of service via local access.
client/mount.cifs.c in mount.cifs in smbfs in Samba 3.4.5 and earlier does not verify that the (1) device name and (2) mountpoint strings are composed of valid characters, which allows local users to cause a denial of service (mtab corruption) via a crafted string.
Improper input validation in Intel(R) Graphics Drivers before version 26.20.100.7212 may allow an authenticated user to enable denial of service via local access.
The PV domain builder in Xen 4.2 and earlier does not validate the size of the kernel or ramdisk (1) before or (2) after decompression, which allows local guest administrators to cause a denial of service (domain 0 memory consumption) via a crafted (a) kernel or (b) ramdisk.
The /etc/profile.d/60alias.sh script in the Mandriva bash package for Bash 2.05b, 3.0, 3.2, 3.2.48, and 4.0 enables the --show-control-chars option in LS_OPTIONS, which allows local users to send escape sequences to terminal emulators, or hide the existence of a file, via a crafted filename.
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin, in which an input data size is not validated, which may lead to tampering or denial of service. This affects vGPU version 8.x (prior to 8.5), version 10.x (prior to 10.4) and version 11.0.
VMware ESXi (7.0 prior to ESXi70U1c-17325551), VMware Workstation (16.x prior to 16.0 and 15.x prior to 15.5.7), VMware Fusion (12.x prior to 12.0 and 11.x prior to 11.5.7) and VMware Cloud Foundation contain a denial of service vulnerability due to improper input validation in GuestInfo. A malicious actor with normal user privilege access to a virtual machine can crash the virtual machine's vmx process leading to a denial of service condition.
In affected versions of TensorFlow running an LSTM/GRU model where the LSTM/GRU layer receives an input with zero-length results in a CHECK failure when using the CUDA backend. This can result in a query-of-death vulnerability, via denial of service, if users can control the input to the layer. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
IBM Cloud Orchestrator could allow a local authenticated attacker to cause the server to slow down for a short period of time by using a specially crafted and malformed URL.
A denial of service vulnerability exists when Microsoft Hyper-V on a host server fails to properly validate specific malicious data from a user on a guest operating system.To exploit the vulnerability, an attacker who already has a privileged account on a guest operating system, running as a virtual machine, could run a specially crafted application.The security update addresses the vulnerability by resolving the conditions where Hyper-V would fail to handle these requests., aka 'Windows Hyper-V Denial of Service Vulnerability'. This CVE ID is unique from CVE-2020-0661.
<p>A denial of service vulnerability exists when Microsoft Hyper-V on a host server fails to properly validate specific malicious data from a user on a guest operating system.</p> <p>To exploit the vulnerability, an attacker who already has a privileged account on a guest operating system, running as a virtual machine, could run a specially crafted application.</p> <p>The security update addresses the vulnerability by resolving the conditions where Hyper-V would fail to handle these requests.</p>
A vulnerability has been identified in SIMATIC RTLS Locating Manager (All versions < V2.12). The affected application does not properly handle the import of large configuration files. A local attacker could import a specially crafted file which could lead to a denial-of-service condition of the application service.
In the settings app, there is a possible app crash due to improper input validation. This could lead to local denial of service of the Settings app with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10Android ID: A-136005061
Multiple memory corruption issues were addressed with improved input validation. This issue is fixed in macOS Mojave 10.14.4. Processing malicious data may lead to unexpected application termination.
improper input validation in allocation request for secure allocations can lead to page fault. in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables, Snapdragon Wired Infrastructure and Networking in IPQ4019, IPQ8064, IPQ8074, MDM9150, MDM9640, MDM9650, MSM8909W, MSM8996AU, QCS405, QCS605, Qualcomm 215, SD 425, SD 427, SD 430, SD 435, SD 439 / SD 429, SD 450, SD 625, SD 632, SD 636, SD 665, SD 675, SD 712 / SD 710 / SD 670, SD 730, SD 820A, SD 835, SD 845 / SD 850, SD 855, SDA660, SDM439, SDM630, SDM660, SDX20, SDX24
Cisco IOS before 12.2(33)SXI allows local users to cause a denial of service (device reboot).
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorDenseAdd` does not fully validate the input arguments. In this case, a reference gets bound to a `nullptr` during kernel execution. This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizedConv2D` does not fully validate the input arguments. In this case, references get bound to `nullptr` for each argument that is empty. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Improper input validation in the API for Intel(R) Graphics Driver versions before 26.20.100.7209 may allow an authenticated user to potentially enable denial of service via local access.
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the `tf.compat.v1.signal.rfft2d` and `tf.compat.v1.signal.rfft3d` lack input validation and under certain condition can result in crashes (due to `CHECK`-failures). Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LoadAndRemapMatrix does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `initializing_values` is a vector but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
A vulnerability in the bridge protocol data unit (BPDU) forwarding functionality of Cisco Aironet Access Points (APs) could allow an unauthenticated, adjacent attacker to cause an AP port to go into an error disabled state. The vulnerability occurs because BPDUs received from specific wireless clients are forwarded incorrectly. An attacker could exploit this vulnerability on the wireless network by sending a steady stream of crafted BPDU frames. A successful exploit could allow the attacker to cause a limited denial of service (DoS) attack because an AP port could go offline.
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.GetSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a positive scalar but there is no validation. Since this value is used to allocate the output tensor, a negative value would result in a `CHECK`-failure (assertion failure), as per TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorToCSRSparseMatrix` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `dense_shape` is a vector and `indices` is a matrix (as part of requirements for sparse tensors) but there is no validation for this. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
The cleanup_journal_tail function in the Journaling Block Device (JBD) functionality in the Linux kernel 2.6 allows local users to cause a denial of service (assertion error and kernel oops) via an ext3 or ext4 image with an "invalid log first block value."
mm/filemap.c in the Linux kernel before 2.6.25 allows local users to cause a denial of service (infinite loop) via a writev system call that triggers an iovec of zero length, followed by a page fault for an iovec of nonzero length.
Insufficient input validation in Kernel Mode module for Intel(R) Graphics Driver before version 25.20.100.6519 may allow an authenticated user to potentially enable denial of service via local access.
Insufficient input validation in Intel(R) Driver & Support Assistant version 19.3.12.3 and before may allow a privileged user to potentially enable denial of service via local access.
Improper validation for loop variable received from firmware can lead to out of bound access in WLAN function while iterating through loop in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music in APQ8053, APQ8096AU, APQ8098, MDM9640, MSM8996AU, MSM8998, QCA6574AU, QCN7605, QCS405, QCS605, SDA845, SDM845, SDX20
Insufficient input validation in i40e driver for Intel(R) Ethernet 700 Series Controllers versions before 7.0 may allow an authenticated user to potentially enable a denial of service via local access.
Insufficient input validation in KMD module for Intel(R) Graphics Driver before version 10.18.14.5067 (aka 15.36.x.5067) and 10.18.10.5069 (aka 15.33.x.5069) may allow an authenticated user to potentially enable denial of service via local access.
Insufficient input validation in the Intel(R) SGX driver for Linux may allow an authenticated user to potentially enable a denial of service via local access.
Insufficient input validation in i40e driver for Intel(R) Ethernet 700 Series Controllers versions before 2.8.43 may allow an authenticated user to potentially enable a denial of service via local access.