TensorFlow is an open source platform for machine learning. In affected versions the code for boosted trees in TensorFlow is still missing validation. As a result, attackers can trigger denial of service (via dereferencing `nullptr`s or via `CHECK`-failures) as well as abuse undefined behavior (binding references to `nullptr`s). An attacker can also read and write from heap buffers, depending on the API that gets used and the arguments that are passed to the call. Given that the boosted trees implementation in TensorFlow is unmaintained, it is recommend to no longer use these APIs. We will deprecate TensorFlow's boosted trees APIs in subsequent releases. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of SVDF in TFLite is [vulnerable to a null pointer error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/svdf.cc#L300-L313). The [`GetVariableInput` function](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L115-L119) can return a null pointer but `GetTensorData` assumes that the argument is always a valid tensor. Furthermore, because `GetVariableInput` calls [`GetMutableInput`](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L82-L90) which might return `nullptr`, the `tensor->is_variable` expression can also trigger a null pointer exception. We have patched the issue in GitHub commit 5b048e87e4e55990dae6b547add4dae59f4e1c76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Sending invalid argument for `row_partition_types` of `tf.raw_ops.RaggedTensorToTensor` API results in a null pointer dereference and undefined behavior. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L328) accesses the first element of a user supplied list of values without validating that the provided list is not empty. We have patched the issue in GitHub commit 301ae88b331d37a2a16159b65b255f4f9eb39314. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the code for `tf.raw_ops.SaveV2` does not properly validate the inputs and an attacker can trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/save_restore_v2_ops.cc) uses `ValidateInputs` to check that the input arguments are valid. This validation would have caught the illegal state represented by the reproducer above. However, the validation uses `OP_REQUIRES` which translates to setting the `Status` object of the current `OpKernelContext` to an error status, followed by an empty `return` statement which just terminates the execution of the function it is present in. However, this does not mean that the kernel execution is finalized: instead, execution continues from the next line in `Compute` that follows the call to `ValidateInputs`. This is equivalent to lacking the validation. We have patched the issue in GitHub commit 9728c60e136912a12d99ca56e106b7cce7af5986. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all binary cwise operations that don't require broadcasting (e.g., gradients of binary cwise operations). The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) assumes that the two inputs have exactly the same number of elements but does not check that. Hence, when the eigen functor executes it triggers heap OOB reads and undefined behavior due to binding to nullptr. We have patched the issue in GitHub commit 93f428fd1768df147171ed674fee1fc5ab8309ec. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Calling TF operations with tensors of non-numeric types when the operations expect numeric tensors result in null pointer dereferences. The conversion from Python array to C++ array(https://github.com/tensorflow/tensorflow/blob/ff70c47a396ef1e3cb73c90513da4f5cb71bebba/tensorflow/python/lib/core/ndarray_tensor.cc#L113-L169) is vulnerable to a type confusion. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger undefined behavior by binding to null pointer in `tf.raw_ops.ParameterizedTruncatedNormal`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3f6fe4dfef6f57e768260b48166c27d148f3015f/tensorflow/core/kernels/parameterized_truncated_normal_op.cc#L630) does not validate input arguments before accessing the first element of `shape`. If `shape` argument is empty, then `shape_tensor.flat<T>()` is an empty array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
In onCreate of SliceDeepLinkSpringBoard.java there is a possible insecure Intent. This could lead to local elevation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10Android ID: A-122836081
Null pointer dereference occurs for channel context while opening glink channel in Snapdragon Auto, Snapdragon Consumer IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in MDM9607, MDM9640, MSM8909W, QCS405, QCS605, SD 425, SD 427, SD 430, SD 435, SD 439 / SD 429, SD 450, SD 625, SD 632, SD 636, SD 712 / SD 710 / SD 670, SD 820A, SD 835, SD 845 / SD 850, SDM439, SDM630, SDM660, SDX24
In all android releases (Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, asynchronous callbacks received a pointer to a callers local variable. Should the caller return early (e.g., timeout), the callback will dereference an invalid pointer.
In all android releases(Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, Null pointer dereference vulnerability may occur due to missing NULL assignment in NAT module of freed pointer.
When an atomic commit is issued on a writeback panel with a NULL output_layer parameter in Android for MSM, Firefox OS for MSM, and QRD Android before 2017-06-03, a NULL pointer dereference may potentially occur.
TensorFlow is an end-to-end open source platform for machine learning. When restoring tensors via raw APIs, if the tensor name is not provided, TensorFlow can be tricked into dereferencing a null pointer. Alternatively, attackers can read memory outside the bounds of heap allocated data by providing some tensor names but not enough for a successful restoration. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) retrieves the tensor list corresponding to the `tensor_name` user controlled input and immediately retrieves the tensor at the restoration index (controlled via `preferred_shard` argument). This occurs without validating that the provided list has enough values. If the list is empty this results in dereferencing a null pointer (undefined behavior). If, however, the list has some elements, if the restoration index is outside the bounds this results in heap OOB read. We have patched the issue in GitHub commit 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Lack of Input Validation in SDMX API can lead to NULL pointer access in Snapdragon Automobile, Snapdragon Mobile and Snapdragon Wear in versions MDM9206, MDM9607, MDM9650, MSM8996AU, SD 210/SD 212/SD 205, SD 410/12, SD 425, SD 430, SD 450, SD 615/16/SD 415, SD 617, SD 625, SD 650/52, SD 810, SD 820, SD 820A, SD 835, SD 845, SD 850, SDA660 .
In the video_ioctl2() function in the camera driver in Android for MSM, Firefox OS for MSM, and QRD Android before 2017-09-16, an untrusted pointer dereference may potentially occur.
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, untrusted pointer dereference in update_userspace_power() function in power leads to information exposure.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` exhibits undefined behavior by dereferencing null pointers backing attacker-supplied empty tensors. The implementation(https://github.com/tensorflow/tensorflow/blob/72fe792967e7fd25234342068806707bbc116618/tensorflow/core/kernels/pooling_ops_3d.cc#L679-L703) fails to validate that the 3 tensor inputs are not empty. If any of them is empty, then accessing the elements in the tensor results in dereferencing a null pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixDiag*` operations(https://github.com/tensorflow/tensorflow/blob/4c4f420e68f1cfaf8f4b6e8e3eb857e9e4c3ff33/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L195-L197) does not validate that the tensor arguments are non-empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference by providing an invalid `permutation` to `tf.raw_ops.SparseMatrixSparseCholesky`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc#L85-L86) fails to properly validate the input arguments. Although `ValidateInputs` is called and there are checks in the body of this function, the code proceeds to the next line in `ValidateInputs` since `OP_REQUIRES`(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/framework/op_requires.h#L41-L48) is a macro that only exits the current function. Thus, the first validation condition that fails in `ValidateInputs` will cause an early return from that function. However, the caller will continue execution from the next line. The fix is to either explicitly check `context->status()` or to convert `ValidateInputs` to return a `Status`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In eager mode (default in TF 2.0 and later), session operations are invalid. However, users could still call the raw ops associated with them and trigger a null pointer dereference. The implementation(https://github.com/tensorflow/tensorflow/blob/eebb96c2830d48597d055d247c0e9aebaea94cd5/tensorflow/core/kernels/session_ops.cc#L104) dereferences the session state pointer without checking if it is valid. Thus, in eager mode, `ctx->session_state()` is nullptr and the call of the member function is undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_add_op.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The fix for CVE-2020-15209(https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209) missed the case when the target shape of `Reshape` operator is given by the elements of a 1-D tensor. As such, the fix for the vulnerability(https://github.com/tensorflow/tensorflow/blob/9c1dc920d8ffb4893d6c9d27d1f039607b326743/tensorflow/lite/core/subgraph.cc#L1062-L1074) allowed passing a null-buffer-backed tensor with a 1D shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of TrySimplify(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc#L390-L401) has undefined behavior due to dereferencing a null pointer in corner cases that result in optimizing a node with no inputs. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FusedBatchNorm` is vulnerable to a heap buffer overflow. If the tensors are empty, the same implementation can trigger undefined behavior by dereferencing null pointers. The implementation(https://github.com/tensorflow/tensorflow/blob/57d86e0db5d1365f19adcce848dfc1bf89fdd4c7/tensorflow/core/kernels/fused_batch_norm_op.cc) fails to validate that `scale`, `offset`, `mean` and `variance` (the last two only when required) all have the same number of elements as the number of channels of `x`. This results in heap out of bounds reads when the buffers backing these tensors are indexed past their boundary. If the tensors are empty, the validation mentioned in the above paragraph would also trigger and prevent the undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
In ion, there is a possible use after free due to an integer overflow. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06371108; Issue ID: ALPS06371108.
In Qualcomm Android for MSM, Firefox OS for MSM, and QRD Android with all Android releases from CAF using the Linux kernel before security patch level 2018-04-05, while IPA WAN-driver is processing multiple requests from modem/user-space module, the global variable "num_q6_rule" does not have a mutex lock and thus can be accessed and modified by multiple threads.
An improper boundary check in RPMB ldfw prior to SMR Feb-2022 Release 1 allows arbitrary memory write and code execution.
An improper input validation in SMC_SRPMB_WSM handler of RPMB ldfw prior to SMR Feb-2022 Release 1 allows arbitrary memory write and code execution.
Use after issue in WLAN function due to multiple ACS scan requests at a time in Snapdragon Auto, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile in MDM9150, MDM9206, MDM9607, MDM9640, MDM9650, MSM8909W, QCA6574AU, SD 210/SD 212/SD 205, SD 615/16/SD 415, SD 625, SD 650/52, SD 820, SDX20
Incorrect bound check can lead to potential buffer overwrite in WLAN function in Snapdragon Mobile in version SD 835, SD 845, SD 850, SDA660.
An improper check or handling of exceptional conditions in NPU driver prior to SMR Jan-2022 Release 1 allows arbitrary memory write and code execution.
In all android releases(Android for MSM, Firefox OS for MSM, QRD Android) from CAF using the linux kernel, Un-trusted pointer de-reference issue by accessing a variable which is already freed.
Unprotected dynamic receiver in Telecom prior to SMR Feb-2022 Release 1 allows untrusted applications to launch arbitrary activity.
In WLAN driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06807363; Issue ID: ALPS06807363.
In WLAN driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06511132; Issue ID: ALPS06511132.
Improper input validation on input which is used as an array index will lead to an out of bounds issue while processing AP find event from firmware in Snapdragon Auto, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music in MDM9150, MDM9206, MDM9607, MDM9640, MDM9650, MSM8996AU, QCA6174A, QCA6574AU, QCA9377, QCA9379, SD 210/SD 212/SD 205, SD 625, SD 675, SD 712 / SD 710 / SD 670, SD 820, SD 820A, SD 845 / SD 850, SD 855, SDX20, SDX24, SM7150
In GED driver, there is a possible use after free due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06641585; Issue ID: ALPS06641585.
Possible out of bounds write due to improper input validation while processing DO_ACS vendor command in Snapdragon Auto, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music in MDM9150, MDM9206, MDM9607, MDM9640, MDM9650, MSM8996AU, QCA6174A, QCA6574AU, QCA9377, QCA9379, QCS605, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 450, SD 625, SD 636, SD 712 / SD 710 / SD 670, SD 820A, SD 845 / SD 850, SD 855, SDA660, SDM630, SDM660, SDX20, SDX24
In power service, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06419106; Issue ID: ALPS06419077.
An attacker can change the pointer to untrusted memory to point to trusted memory region which causes copying trusted memory to trusted memory, if the latter is later copied out, it allows for reading of memory regions from the trusted region. It is recommended to update past 0.6.2 or git commit https://github.com/google/asylo/commit/53ed5d8fd8118ced1466e509606dd2f473707a5c
In all Qualcomm products with Android releases from CAF using the Linux kernel, due to lack of bounds checking on the variable "data_len" from the function WLANQCMBR_McProcessMsg, a buffer overflow may potentially occur in WLANFTM_McProcessMsg.
In WLAN driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06704526; Issue ID: ALPS06704462.
Stack-based buffer overflow in decoder/impeg2d_vld.c in mediaserver in Android 6.x before 2016-04-01 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted media file, aka internal bug 25812590.
In Autoboot, there is a possible permission bypass due to a missing permission check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06713894; Issue ID: ALPS06713894.
In CCCI, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06641673; Issue ID: ALPS06641653.
In sched driver, there is a possible use after free due to improper locking. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06479032; Issue ID: ALPS06479032.
In TEEI driver, there is a possible use after free due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06641388; Issue ID: ALPS06641388.
In sound driver, there is a possible information disclosure due to symlink following. This could lead to local information disclosure with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06558663; Issue ID: ALPS06558663.
NVIDIA libnvomx contains a possible out of bounds write due to a missing bounds check which could lead to local escalation of privilege. This issue is rated as high. Product: Android. Version: N/A. Android: A-64893247. Reference: N-CVE-2017-6286.
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, wma_unified_link_peer_stats_event_handler function has a variable num_rates which represents the sum of all the peer_stats->num_rates. The current behavior in this function is to validate only the num_rates of the first peer stats (peer_stats->num_rates) against WMA_SVC_MSG_MAX_SIZE, but not the sum of all the peer's num_rates (num_rates) which may lead to a buffer overflow when the firmware buffer is copied in to the allocated buffer (peer_stats) as the size for the memory allocation - link_stats_results_size is based on num_rates.