Fuji Electric V-Server 4.0.3.0 and prior, A heap-based buffer overflow vulnerability has been identified, which may allow remote code execution.
Fuji Electric V-Server 4.0.3.0 and prior, A stack-based buffer overflow vulnerability has been identified, which may allow remote code execution.
Fuji Electric FRENIC LOADER v3.3 v7.3.4.1a of FRENIC-Mini (C1), FRENIC-Mini (C2), FRENIC-Eco, FRENIC-Multi, FRENIC-MEGA, FRENIC-Ace. The program does not properly check user-supplied comments which may allow for arbitrary remote code execution.
In Fuji Electric V-Server 4.0.6 and prior, several heap-based buffer overflows have been identified, which may allow an attacker to remotely execute arbitrary code.
Fuji Electric V-Server 4.0.3.0 and prior, Several out-of-bounds write vulnerabilities have been identified, which may allow remote code execution.
Fuji Electric Monitouch V-SFT is vulnerable to a stack-based buffer overflow, which could allow an attacker to execute arbitrary code.
Fuji Electric Alpha5 Smart Loader Versions 3.7 and prior. The device does not perform a check on the length/size of a project file before copying the entire contents of the file to a heap-based buffer.
Fuji Electric V-Server 4.0.3.0 and prior, Multiple untrusted pointer dereference vulnerabilities have been identified, which may allow remote code execution.
Fuji Electric V-Server 4.0.3.0 and prior, A use after free vulnerability has been identified, which may allow remote code execution.
Fuji Electric V-Server 4.0.3.0 and prior, An integer underflow vulnerability has been identified, which may allow remote code execution.
Fuji Electric V-Server 4.0.3.0 and prior, An out-of-bounds read vulnerability has been identified, which may allow remote code execution.
An issue was discovered in Fuji Electric V-Server Version 3.3.22.0 and prior. A memory corruption vulnerability has been identified (aka improper restriction of operations within the bounds of a memory buffer), which may allow remote code execution.
Fuji Electric Monitouch V-SFT is vulnerable to a type confusion, which could cause a crash or code execution.
Fuji Electric V-Server Lite and Tellus Lite V-Simulator prior to v4.0.12.0 is vulnerable to an out-of-bounds write, which can result in data corruption, a system crash, or code execution.
Fuji Electric V-Server Lite and Tellus Lite V-Simulator prior to v4.0.12.0 is vulnerable to a stack-based buffer overflow, which may allow an attacker to achieve code execution.
Stack-based buffer overflow vulnerability in V-Server v4.0.12.0 and earlier allows a local attacker to obtain the information and/or execute arbitrary code by having a user to open a specially crafted project file.
Out-of-bounds write vulnerability in V-Server v4.0.12.0 and earlier allows a local attacker to obtain the information and/or execute arbitrary code by having a user to open a specially crafted project file.
Fuji Electric Monitouch V-SFT X1 File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of X1 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24548.
Fuji Electric Tellus Lite V-Simulator 5 V8 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Tellus Lite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V8 files in the V-Simulator 5 component. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24769.
Fuji Electric Monitouch V-SFT V8 File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V8 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24502.
Fuji Electric Monitouch V-SFT V10 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V10 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24504.
Fuji Electric Monitouch V-SFT V8 File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V8 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24505.
Fuji Electric Monitouch V-SFT V8C File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V8C files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24450.
Fuji Electric Tellus Lite V-Simulator 5 V8 File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Tellus Lite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V8 files in the V-Simulator 5 component. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24768.
Fuji Electric Tellus Lite V-Simulator 5 V8 File Parsing Stack-Based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Tellus Lite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V8 files in the V-Simulator 5 component. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24770.
Fuji Electric Monitouch V-SFT V10 File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V10 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24413.
Fuji Electric Tellus Lite V-Simulator 5 V8 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Tellus Lite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V8 files in the V-Simulator 5 component. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24771.
Fuji Electric Tellus Lite V-Simulator 5 V8 File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Tellus Lite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V8 files in the V-Simulator 5 component. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24664.
Fuji Electric Monitouch V-SFT V10 File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V10 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24449.
Fuji Electric Monitouch V-SFT X1 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of X1 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24663.
Fuji Electric Monitouch V-SFT V10 File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V10 files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24448.
Fuji Electric Monitouch V-SFT V9C File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V9C files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24506.
Fuji Electric Monitouch V-SFT V8 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V8 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24662.
V-SFT v6.2.5.0 and earlier contains an issue with stack-based buffer overflow in VS6MemInIF!set_temp_type_default function. Opening specially crafted V7 or V8 files may lead to crash, information disclosure, and arbitrary code execution.
V-SFT v6.2.5.0 and earlier contains an issue with out-of-bounds write in VS6MemInIF!set_temp_type_default function. Opening specially crafted V7 or V8 files may lead to crash, information disclosure, and arbitrary code execution.
V-SFT v6.2.5.0 and earlier contains an issue with out-of-bounds write in VS6EditData!CDataRomErrorCheck::MacroCommandCheck function. Opening specially crafted V7 or V8 files may lead to crash, information disclosure, and arbitrary code execution.
V-SFT v6.2.5.0 and earlier contains an issue with stack-based buffer overflow in VS6ComFile!CV7BaseMap::WriteV7DataToRom function. Opening specially crafted V7 or V8 files may lead to crash, information disclosure, and arbitrary code execution.
V-SFT v6.2.5.0 and earlier contains an issue with out-of-bounds write in VS6ComFile!MakeItemGlidZahyou function. Opening specially crafted V7 or V8 files may lead to crash, information disclosure, and arbitrary code execution.
V-SFT v6.2.5.0 and earlier contains an issue with stack-based buffer overflow in VS6File!CTxSubFile::get_ProgramFile_name function. Opening specially crafted V7 or V8 files may lead to crash, information disclosure, and arbitrary code execution.
Out-of-bounds write vulnerability exists in V-Server V4.0.18.0 and earlier and V-Server Lite V4.0.18.0 and earlier. If a user opens a specially crafted VPR file, information may be disclosed and/or arbitrary code may be executed.
When Fuji Electric Tellus Lite V-Simulator parses a specially-crafted input file an out of bounds write may occur.
Multiple out-of-bounds write issues have been identified in the way the application processes project files, allowing an attacker to craft a special project file that may allow arbitrary code execution on the Tellus Lite V-Simulator and V-Server Lite (versions prior to 4.0.10.0).
A heap-based buffer overflow issue has been identified in the way the application processes project files, allowing an attacker to craft a special project file that may allow arbitrary code execution on the Tellus Lite V-Simulator and V-Server Lite (versions prior to 4.0.10.0).
Stack-based buffer overflow may occur when Fuji Electric Tellus Lite V-Simulator parses a specially-crafted input file.
Fuji Electric Monitouch V-SFT V9C File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Fuji Electric Monitouch V-SFT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of V9C files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-24503.
Stack-based buffer overflow vulnerability exists in TELLUS v4.0.15.0 and TELLUS Lite v4.0.15.0. Opening a specially crafted SIM2 file may lead to information disclosure and/or arbitrary code execution. This vulnerability is different from CVE-2023-32538 and CVE-2023-32201.
Stack-based buffer overflow vulnerability exists in TELLUS v4.0.15.0 and TELLUS Lite v4.0.15.0. Opening a specially crafted SIM2 file may lead to information disclosure and/or arbitrary code execution. This vulnerability is different from CVE-2023-32538 and CVE-2023-32273.
Fuji Electric Tellus Lite V-Simulator versions 4.0.12.0 and prior are vulnerable to a stack-based buffer overflow which may allow an attacker to execute arbitrary code.
Stack-based buffer overflow vulnerability exists in FRENIC RHC Loader v1.1.0.3. If a user opens a specially crafted FNE file, sensitive information on the system where the affected product is installed may be disclosed or arbitrary code may be executed.
Fuji Electric Tellus Lite V-Simulator versions 4.0.12.0 and prior are vulnerable to an out-of-bounds write which may allow an attacker to execute arbitrary code.