An improper input validation in SMC_SRPMB_WSM handler of RPMB ldfw prior to SMR Feb-2022 Release 1 allows arbitrary memory write and code execution.
In WLAN driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06807363; Issue ID: ALPS06807363.
In WLAN driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06511132; Issue ID: ALPS06511132.
In power service, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06419106; Issue ID: ALPS06419077.
In WLAN driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06704526; Issue ID: ALPS06704462.
In CCCI, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06641673; Issue ID: ALPS06641653.
NVIDIA libnvomx contains a possible out of bounds write due to a missing bounds check which could lead to local escalation of privilege. This issue is rated as high. Product: Android. Version: N/A. Android: A-64893247. Reference: N-CVE-2017-6286.
In decrypt_1_2 of CryptoPlugin.cpp, there is a possible out of bounds write due to an integer overflow. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-9 Android-10 Android-11 Android-8.1Android ID: A-176444622
In the nfc_hci_cmd_received() function of core.c, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege in the kernel with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android kernel. Android ID: A-62679701.
In libmediadrm, there is an out-of-bounds write due to improper input validation. This could lead to local elevation of privileges with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: 8.0, 8.1. Android ID: A-67962232.
In vow driver, there is a possible out of bounds write due to a stack-based buffer overflow. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS05837793; Issue ID: ALPS05837793.
In the onQueueFilled function of SoftAVCDec, there is a possible out-of-bounds write due to a use after free if a bad header causes the decoder to get caught in a loop while another thread frees the memory it's accessing. This could lead to a local elevation of privilege enabling code execution as a privileged process with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: 6.0, 6.0.1, 7.0, 7.1.1, 7.1.2, 8.0, 8.1. Android ID: A-66969349.
In ashmem_ioctl of ashmem.c, there is an out-of-bounds write due to insufficient locking when accessing asma. This could lead to a local elevation of privilege enabling code execution as a privileged process with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android kernel. Android ID: A-66954097.
In MM service, there is a possible out of bounds write due to a heap-based buffer overflow. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: DTV03330460; Issue ID: DTV03330460.
In Bluetooth, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06126826; Issue ID: ALPS06126826.
In vow driver, there is a possible memory corruption due to improper input validation. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS05857308; Issue ID: ALPS05857308.
In CameraDeviceClient::submitRequestList of CameraDeviceClient.cpp, there is an out-of-bounds write if metadataSize is too small. This could lead to a local elevation of privilege enabling code execution as a privileged process with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: 5.1.1, 6.0, 6.0.1, 7.0, 7.1.1, 7.1.2, 8.0, 8.1. Android ID: A-67782345.
An elevation of privilege vulnerability in the kernel v4l2 video driver. Product: Android. Versions: Android kernel. Android ID A-34624167.
In hypx_create_blob_dmabuf of faceauth_hypx.c, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-188911154References: N/A
In android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, when processing a specially crafted QCA_NL80211_VENDOR_SUBCMD_ENCRYPTION_TEST cfg80211 vendor command a stack-based buffer overflow can occur.
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, when an audio driver ioctl handler is called, a kernel out-of-bounds write can potentially occur.
In ssmr, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is no needed for exploitation. Patch ID: ALPS06362920; Issue ID: ALPS06362920.
In Bluetooth, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06126832; Issue ID: ALPS06126832.
In the TitanM chip, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-202006198References: N/A
In Bluetooth, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06198663; Issue ID: ALPS06198663.
In imgsensor, there is a possible out of bounds write due to an incorrect bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06479763; Issue ID: ALPS06479734.
In MM service, there is a possible out of bounds write due to a stack-based buffer overflow. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: DTV03330460; Issue ID: DTV03330460.
An issue was discovered on Samsung mobile devices with JBP(4.2) and KK(4.4) (Marvell chipsets) software. The ACIPC-MSOCKET driver allows local privilege escalation via a stack-based buffer overflow. The Samsung ID is SVE-2016-5393 (April 2016).
TensorFlow is an open source platform for machine learning. In affected versions the shape inference function for `Transpose` is vulnerable to a heap buffer overflow. This occurs whenever `perm` contains negative elements. The shape inference function does not validate that the indices in `perm` are all valid. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
In copy_io_entries of lwis_ioctl.c, there is a possible out of bounds write due to an integer overflow. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-205992503References: N/A
In amcs_cdev_unlocked_ioctl of audiometrics.c, there is a possible out of bounds write due to improper input validation. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-206128522References: N/A
In prepare_io_entry and prepare_response of lwis_ioctl.c and lwis_periodic_io.c, there is a possible out of bounds write due to an integer overflow. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-205995773References: N/A
In TBD of TBD, there is a possible out of bounds write due to memory corruption. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-195726151References: N/A
In ProtocolStkProactiveCommandAdapter::Init of protocolstkadapter.cpp, there is a possible out of bounds write due to an incorrect bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-205035540References: N/A
In ProtocolStkProactiveCommandAdapter::Init of protocolstkadapter.cpp, there is a possible out of bounds write due to an incorrect bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-205036834References: N/A
In sec_ts_parsing_cmds of (TBD), there is a possible out of bounds write due to an incorrect bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-194499021References: N/A
In Keymaster, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12LAndroid ID: A-173567719
NVIDIA Tegra kernel driver contains a vulnerability in NVIDIA NVDEC, where a user with high privileges might be able to read from or write to a memory location that is outside the intended boundary of the buffer, which may lead to denial of service, Information disclosure, loss of Integrity, or possible escalation of privileges.
TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L433). Before the `for` loop, `batch_idx` is set to 0. The user controls the `splits` array, making it contain only one element, 0. Thus, the code in the `while` loop would increment `batch_idx` and then try to read `splits(1)`, which is outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) computes the size of the filter tensor but does not validate that it matches the number of elements in `filter_sizes`. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The validation in `tf.raw_ops.QuantizeAndDequantizeV2` allows invalid values for `axis` argument:. The validation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L74-L77) uses `||` to mix two different conditions. If `axis_ < -1` the condition in `OP_REQUIRES` will still be true, but this value of `axis_` results in heap underflow. This allows attackers to read/write to other data on the heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalAvgPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/dcba796a28364d6d7f003f6fe733d82726dda713/tensorflow/core/kernels/fractional_avg_pool_op.cc#L216) fails to validate that the pooling sequence arguments have enough elements as required by the `out_backprop` tensor shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
In DisplayFtmItem in the bootloader, there is an out-of-bounds write due to reading a string without verifying that it's null-terminated. This could lead to a secure boot bypass and a local elevation of privilege enabling code execution as a privileged process with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android kernel. Android ID: A-68269077.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in Eigen implementation of `tf.raw_ops.BandedTriangularSolve`. The implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L269-L278) calls `ValidateInputTensors` for input validation but fails to validate that the two tensors are not empty. Furthermore, since `OP_REQUIRES` macro only stops execution of current function after setting `ctx->status()` to a non-OK value, callers of helper functions that use `OP_REQUIRES` must check value of `ctx->status()` before continuing. This doesn't happen in this op's implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L219), hence the validation that is present is also not effective. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.SparseSplit`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/699bff5d961f0abfde8fa3f876e6d241681fbef8/tensorflow/core/util/sparse/sparse_tensor.h#L528-L530) accesses an array element based on a user controlled offset. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L694-L696) does not check that the initialization of `Pool3dParameters` completes successfully. Since the constructor(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L48-L88) uses `OP_REQUIRES` to validate conditions, the first assertion that fails interrupts the initialization of `params`, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
An improper input validation vulnerability in NPU firmware prior to SMR MAY-2021 Release 1 allows arbitrary memory write and code execution.
An improper length check in APAService prior to SMR Sep-2021 Release 1 results in stack based Buffer Overflow.
An issue was discovered on Samsung mobile devices with P(9.0) and Q(10.0) software. There is a stack overflow in the kperfmon driver. The Samsung ID is SVE-2019-15876 (January 2020).