A stack-based buffer overflow in processCommandUploadSnapshot in libcommon.so in Petwant PF-103 firmware 4.22.2.42 and Petalk AI 3.2.2.30 allows remote attackers to cause denial of service or run arbitrary code as the root user.
processCommandSetUid() in libcommon.so in Petwant PF-103 firmware 4.22.2.42 and Petalk AI 3.2.2.30 allows remote attackers to execute arbitrary system commands as the root user.
The processCommandUploadLog() function of libcommon.so in Petwant PF-103 firmware 4.22.2.42 and Petalk AI 3.2.2.30 allows remote attackers to execute arbitrary system commands as the root user.
processCommandUpgrade() in libcommon.so in Petwant PF-103 firmware 4.22.2.42 and Petalk AI 3.2.2.30 allows remote attackers to execute arbitrary system commands as the root user.
Use of default credentials for the TELNET server in Petwant PF-103 firmware 4.3.2.50 and Petalk AI 3.2.2.30 allows remote attackers to execute arbitrary system commands as the root user.
The processCommandSetMac() function of libcommon.so in Petwant PF-103 firmware 4.22.2.42 and Petalk AI 3.2.2.30 allows remote attackers to execute arbitrary system commands as the root user.
In cd_CodeMsg of cd_codec.c, there is a possible out of bounds write due to a heap buffer overflow. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-250100597References: N/A
In SDP_AddAttribute of sdp_db.cc, there is a possible out of bounds write due to an incorrect bounds check. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11 Android-12 Android-12L Android-13Android ID: A-261867748
Buffer overflow in system firmware for EDK II may allow unauthenticated user to potentially enable escalation of privilege and/or denial of service via network access.
In bta_dm_sdp_result of bta_dm_act.cc, there is a possible out of bounds stack write due to a missing bounds check. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android Versions: Android-6.0 Android-6.0.1 Android-7.0 Android-7.1.1 Android-7.1.2 Android-8.0 Android-8.1 Android ID: A-74016921.
In ixheaacd_adts_crc_start_reg of ixheaacd_adts_crc_check.c, there is a possible out of bounds write due to a missing bounds check. This could lead to remote escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android-9. Android ID: A-113261928.
In bta_ag_parse_cmer of bta_ag_cmd.cc in Android-7.0, Android-7.1.1, Android-7.1.2, Android-8.0, Android-8.1 and Android-9, there is a possible out-of-bounds write due to a missing bounds check. This could lead to remote code execution in the bluetooth server with no additional execution privileges needed. User interaction is not needed for exploitation. Android ID: A-112860487.
In CDMA PPP protocol, there is a possible out of bounds write due to a missing bounds check. This could lead to remote escalation of privilege with no additional execution privilege needed. User interaction is not needed for exploitation. Patch ID: MOLY01068234; Issue ID: ALPS08010003.
A memory corruption vulnerability exists in the Windows DHCP client when an attacker sends specially crafted DHCP responses to a client. An attacker who successfully exploited the vulnerability could run arbitrary code on the client machine. To exploit the vulnerability, an attacker could send specially crafted DHCP responses to a client. The security update addresses the vulnerability by correcting how Windows DHCP clients handle certain DHCP responses.
In impeg2d_mc_fullx_fully of impeg2d_mc.c there is a possible out of bound write due to missing bounds check. This could lead to remote arbitrary code execution with no additional execution privileges needed. User interaction is needed for exploitation.
A stack buffer overflow vulnerability has been reported to affect QNAP device running QVR Elite, QVR Pro, QVR Guard. If exploited, this vulnerability allows attackers to execute arbitrary code. We have already fixed this vulnerability in the following versions of QVR Elite, QVR Pro, QVR Guard: QuTS hero h5.0.0: QVR Elite 2.1.4.0 (2021/12/06) and later QuTS hero h4.5.4: QVR Elite 2.1.4.0 (2021/12/06) and later QTS 5.0.0: QVR Elite 2.1.4.0 (2021/12/06) and later QTS 4.5.4: QVR Elite 2.1.4.0 (2021/12/06) and later QTS 4.5.4: QVR Pro 2.1.3.0 (2021/12/06) and later QTS 5.0.0: QVR Pro 2.1.3.0 (2021/12/06) and later QTS 4.5.4: QVR Guard 2.1.3.0 (2021/12/06) and later QTS 5.0.0: QVR Guard 2.1.3.0 (2021/12/06) and later
A remote code execution vulnerability exists in Microsoft Exchange software when the software fails to properly handle objects in memory, aka "Microsoft Exchange Memory Corruption Vulnerability." This affects Microsoft Exchange Server.
In gatt_end_operation of gatt_utils.cc, there is a possible out of bounds write due to a missing bounds check. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.
In the deserialization constructor of NanoAppFilter.java, there is a possible loss of data due to type confusion. This could lead to local escalation of privilege in the system server with no additional execution privileges needed. User interaction is not needed for exploitation.
The VMware vCenter Server contains a memory corruption vulnerability in the implementation of the DCERPC protocol. A malicious actor with network access to vCenter Server may trigger a memory corruption vulnerability which may bypass authentication.
In handle_app_cur_val_response of dtif_rc.cc, there is a possible stack buffer overflow due to a missing bounds check. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.
Improper access control settings in ASP Bootloader may allow an attacker to corrupt the return address causing a stack-based buffer overrun potentially leading to arbitrary code execution.
A heap-based buffer overflow vulnerability exists in the XML Decompression DecodeTreeBlock functionality of AT&T Labs Xmill 0.7. Within `DecodeTreeBlock` which is called during the decompression of an XMI file, a UINT32 is loaded from the file and used as trusted input as the length of a buffer. An attacker can provide a malicious file to trigger this vulnerability.
A malicious DNS response can trigger a number of OOB reads, writes, and other memory issues
FreeRDP prior to version 2.0.0-rc4 contains a Heap-Based Buffer Overflow in function zgfx_decompress_segment() that results in a memory corruption and probably even a remote code execution.
In lcsm_SendRrAcquiAssist of lcsm_bcm_assist.c, there is a possible out of bounds write due to a missing bounds check. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-246169606References: N/A
In smp_br_state_machine_event of smp_br_main.cc, there is a possible out of bounds write due to memory corruption. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android Versions: Android-6.0 Android-6.0.1 Android-7.0 Android-7.1.1 Android-7.1.2 Android-8.0 Android-8.1 Android ID: A-80145946.
rdesktop versions up to and including v1.8.3 contain a Heap-Based Buffer Overflow in function process_plane() that results in a memory corruption and probably even a remote code execution.
In ProfSixDecomTcpSACKoption of RohcPacketCommon, there is a possible out of bounds write due to a missing bounds check. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-244450646References: N/A
In prop2cfg of btif_storage.cc, there is a possible out of bounds write due to an incorrect bounds check. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.
rdesktop versions up to and including v1.8.3 contain a Heap-Based Buffer Overflow in function ui_clip_handle_data() that results in a memory corruption and probably even a remote code execution.
The VMware vCenter Server contains an out-of-bounds write vulnerability in the implementation of the DCERPC protocol. A malicious actor with network access to vCenter Server may trigger an out-of-bound write by sending a specially crafted packet leading to memory corruption.
Eaton 9000X DriveA versions 2.0.29 and prior has a stack-based buffer overflow vulnerability, which may allow remote code execution.
Stack-based buffer overflow in Asuswrt-Merlin firmware for ASUS devices older than 384.4 and ASUS firmware before 3.0.0.4.382.50470 for devices allows remote attackers to execute arbitrary code by providing a long string to the blocking.asp page via a GET or POST request. Vulnerable parameters are flag, mac, and cat_id.
A certain sequence of valid BGP or IPv6 BFD packets may trigger a stack based buffer overflow in the Junos OS Packet Forwarding Engine manager (FXPC) process on QFX5000 series, EX4300, EX4600 devices. This issue can result in a crash of the fxpc daemon or may potentially lead to remote code execution. Affected releases are Juniper Networks Junos OS on QFX 5000 series, EX4300, EX4600 are: 14.1X53; 15.1X53 versions prior to 15.1X53-D235; 17.1 versions prior to 17.1R3; 17.2 versions prior to 17.2R3; 17.3 versions prior to 17.3R3-S2, 17.3R4; 17.4 versions prior to 17.4R2-S1, 17.4R3; 18.1 versions prior to 18.1R3-S1, 18.1R4; 18.2 versions prior to 18.2R2; 18.2X75 versions prior to 18.2X75-D30; 18.3 versions prior to 18.3R2.
rdesktop versions up to and including v1.8.3 contain a Heap-Based Buffer Overflow in function cssp_read_tsrequest() that results in a memory corruption and probably even a remote code execution.
The vCenter Server contains a heap overflow vulnerability due to the usage of uninitialized memory in the implementation of the DCERPC protocol. A malicious actor with network access to vCenter Server may exploit heap-overflow vulnerability to execute arbitrary code on the underlying operating system that hosts vCenter Server.
In Advantech WebAccess versions V8.2_20170817 and prior, WebAccess versions V8.3.0 and prior, WebAccess Dashboard versions V.2.0.15 and prior, WebAccess Scada Node versions prior to 8.3.1, and WebAccess/NMS 2.0.3 and prior, a heap-based buffer overflow vulnerability has been identified, which may allow an attacker to execute arbitrary code.
A stack buffer overflow vulnerability has been reported to affect QNAP device running QVR Elite, QVR Pro, QVR Guard. If exploited, this vulnerability allows attackers to execute arbitrary code. We have already fixed this vulnerability in the following versions of QVR Elite, QVR Pro, QVR Guard: QuTS hero h5.0.0: QVR Elite 2.1.4.0 (2021/12/06) and later QuTS hero h4.5.4: QVR Elite 2.1.4.0 (2021/12/06) and later QTS 5.0.0: QVR Elite 2.1.4.0 (2021/12/06) and later QTS 4.5.4: QVR Elite 2.1.4.0 (2021/12/06) and later QTS 4.5.4: QVR Pro 2.1.3.0 (2021/12/06) and later QTS 5.0.0: QVR Pro 2.1.3.0 (2021/12/06) and later QTS 4.5.4: QVR Guard 2.1.3.0 and later QTS 5.0.0: QVR Guard 2.1.3.0 and later
FreeRDP prior to version 2.0.0-rc4 contains a Heap-Based Buffer Overflow in function zgfx_decompress() that results in a memory corruption and probably even a remote code execution.
On Samsung mobile devices with M(6.0) and N(7.x) software, a heap overflow in the sensorhub binder service leads to code execution in a privileged process, aka SVE-2017-10991.
In store_upgrade and store_cmd of drivers/input/touchscreen/stm/ftm4_pdc.c, there are out of bound writes due to missing bounds checks or integer underflows. These could lead to escalation of privilege.
FreeRDP prior to version 2.0.0-rc4 contains an Integer Overflow that leads to a Heap-Based Buffer Overflow in function gdi_Bitmap_Decompress() and results in a memory corruption and probably even a remote code execution.
In Delta Electronics Automation TPEditor version 1.89 or prior, parsing a malformed program file may cause heap-based buffer overflow vulnerability, which may allow remote code execution.
FreeRDP prior to version 2.0.0-rc4 contains an Integer Truncation that leads to a Heap-Based Buffer Overflow in function update_read_bitmap_update() and results in a memory corruption and probably even a remote code execution.
In process_service_attr_req and process_service_search_attr_req of sdp_server.cc, there is an out of bounds write due to a missing bounds check. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.
A buffer overflow vulnerability exists in the Microsoft SQL Server that could allow remote code execution on an affected system, aka "Microsoft SQL Server Remote Code Execution Vulnerability." This affects Microsoft SQL Server.
A remote code execution vulnerability exists in Microsoft Exchange software when the software fails to properly handle objects in memory, aka "Microsoft Exchange Memory Corruption Vulnerability." This affects Microsoft Exchange Server. This CVE ID is unique from CVE-2018-8151.
A DNS client stack-based buffer overflow in ipdnsc_decode_name() affects Wind River VxWorks 6.5 through 7. NOTE: This vulnerability only affects products that are no longer supported by the maintainer
rdesktop versions up to and including v1.8.3 contain an Integer Overflow that leads to an Out-Of-Bounds Write in function process_bitmap_updates() and results in a memory corruption and possibly even a remote code execution.