Bournal before 1.4.1 on FreeBSD 8.0, when the -K option is used, places a ccrypt key on the command line, which allows local users to obtain sensitive information by listing the process and its arguments, related to "echoing."
Integer signedness error in the fw_ioctl (FW_IOCTL) function in the FireWire (IEEE-1394) drivers (dev/firewire/fwdev.c) in various BSD kernels, including DragonFlyBSD, FreeBSD 5.5, MidnightBSD 0.1-CURRENT before 20061115, NetBSD-current before 20061116, NetBSD-4 before 20061203, and TrustedBSD, allows local users to read arbitrary memory contents via certain negative values of crom_buf->len in an FW_GCROM command. NOTE: this issue has been labeled as an integer overflow, but it is more like an integer signedness error.
In FreeBSD before 11.1-STABLE, 11.1-RELEASE-p4, 11.0-RELEASE-p15, 10.4-STABLE, 10.4-RELEASE-p3, and 10.3-RELEASE-p24, not all information in the struct ptrace_lwpinfo is relevant for the state of any thread, and the kernel does not fill the irrelevant bytes or short strings. Since the structure filled by the kernel is allocated on the kernel stack and copied to userspace, a leak of information of the kernel stack of the thread is possible from the debugger. As a result, some bytes from the kernel stack of the thread using ptrace (PT_LWPINFO) call can be observed in userspace.
bsnmpd, as used in FreeBSD 9.3, 10.1, and 10.2, uses world-readable permissions on the snmpd.config file, which allows local users to obtain the secret key for USM authentication by reading the file.
The setsockopt call in the KAME Project IPv6 implementation, as used in FreeBSD 5.2, does not properly handle certain IPv6 socket options, which could allow attackers to read kernel memory and cause a system panic.
The "internal state tracking" code for the random and urandom devices in FreeBSD 5.5, 6.1 through 6.3, and 7.0 beta 4 allows local users to obtain portions of previously-accessed random values, which could be leveraged to bypass protection mechanisms that rely on secrecy of those values.
The iBCS2 system call translator for statfs in NetBSD 1.5 through 1.5.3 and FreeBSD 4 up to 4.8-RELEASE-p2 and 5 up to 5.1-RELEASE-p1 allows local users to read portions of kernel memory (memory disclosure) via a large length parameter, which copies additional kernel memory into userland memory.
The bsdinstall installer in FreeBSD 10.x before 10.1 p9, when configuring full disk encrypted ZFS, uses world-readable permissions for the GELI keyfile (/boot/encryption.key), which allows local users to obtain sensitive key information by reading the file.
The setlogin function in FreeBSD 8.4 through 10.1-RC4 does not initialize the buffer used to store the login name, which allows local users to obtain sensitive information from kernel memory via a call to getlogin, which returns the entire buffer.
The Linux kernel before 2.6.16.9 and the FreeBSD kernel, when running on AMD64 and other 7th and 8th generation AuthenticAMD processors, only save/restore the FOP, FIP, and FDP x87 registers in FXSAVE/FXRSTOR when an exception is pending, which allows one process to determine portions of the state of floating point instructions of other processes, which can be leveraged to obtain sensitive information such as cryptographic keys. NOTE: this is the documented behavior of AMD64 processors, but it is inconsistent with Intel processors in a security-relevant fashion that was not addressed by the kernels.
A logic error in FreeBSD kernel 5.4-STABLE and 6.0 causes the kernel to calculate an incorrect buffer length, which causes more data to be copied to userland than intended, which could allow local users to read portions of kernel memory.
FreeBSD kernel 5.4-STABLE and 6.0 does not completely initialize a buffer before making it available to userland, which could allow local users to read portions of kernel memory.
In FreeBSD before 11.1-STABLE(r332066) and 11.1-RELEASE-p10, due to insufficient initialization of memory copied to userland in the network subsystem, small amounts of kernel memory may be disclosed to userland processes. Unprivileged authenticated local users may be able to access small amounts of privileged kernel data.
The ktrace utility in the FreeBSD kernel 8.4 before p11, 9.1 before p14, 9.2 before p7, and 9.3-BETA1 before p1 uses an incorrect page fault kernel trace entry size, which allows local users to obtain sensitive information from kernel memory via a kernel process trace.
cpio on FreeBSD 2.1.0, Debian GNU/Linux 3.0, and possibly other operating systems, uses a 0 umask when creating files using the -O (archive) or -F options, which creates the files with mode 0666 and allows local users to read or overwrite those files.
The SIOCGIFCONF ioctl (ifconf function) in FreeBSD 4.x through 4.11 and 5.x through 5.4 does not properly clear a buffer before using it, which allows local users to obtain portions of sensitive kernel memory.
In FreeBSD before 11.2-STABLE(r338983), 11.2-RELEASE-p4, 11.1-RELEASE-p15, 10.4-STABLE(r338984), and 10.4-RELEASE-p13, due to insufficient initialization of memory copied to userland in the getcontext and swapcontext system calls, small amounts of kernel memory may be disclosed to userland processes. Unprivileged authenticated local users may be able to access small amounts privileged kernel data.
In FreeBSD before 11.1-STABLE, 11.1-RELEASE-p4, 11.0-RELEASE-p15, 10.4-STABLE, 10.4-RELEASE-p3, and 10.3-RELEASE-p24, the kernel does not properly clear the memory of the kld_file_stat structure before filling the data. Since the structure filled by the kernel is allocated on the kernel stack and copied to userspace, a leak of information from the kernel stack is possible. As a result, some bytes from the kernel stack can be observed in userspace.
In FreeBSD 12.1-STABLE before r360973, 12.1-RELEASE before p5, 11.4-STABLE before r360973, 11.4-BETA1 before p1 and 11.3-RELEASE before p9, the FTP packet handler in libalias incorrectly calculates some packet length allowing disclosure of small amounts of kernel (for kernel NAT) or natd process space (for userspace natd).
ktrace in BSD-based operating systems allows the owner of a process with special privileges to trace the process after its privileges have been lowered, which may allow the owner to obtain sensitive information that the process obtained while it was running with the extra privileges.
FreeBSD port programs that use libkvm for FreeBSD 4.6.2-RELEASE and earlier, including (1) asmon, (2) ascpu, (3) bubblemon, (4) wmmon, and (5) wmnet2, leave open file descriptors for /dev/mem and /dev/kmem, which allows local users to read kernel memory.
libutil in OpenSSH on FreeBSD 4.4 and earlier does not drop privileges before verifying the capabilities for reading the copyright and welcome files, which allows local users to bypass the capabilities checks and read arbitrary files by specifying alternate copyright or welcome files.
The binary compatibility mode for FreeBSD 4.x and 5.x does not properly handle certain Linux system calls, which could allow local users to access kernel memory to gain privileges or cause a system panic.
In FreeBSD 12.1-STABLE before r354734, 12.1-RELEASE before 12.1-RELEASE-p2, 12.0-RELEASE before 12.0-RELEASE-p13, 11.3-STABLE before r354735, and 11.3-RELEASE before 11.3-RELEASE-p6, due to incorrect initialization of a stack data structure, core dump files may contain up to 20 bytes of kernel data previously stored on the stack.
In FreeBSD before 11.1-STABLE(r332303), 11.1-RELEASE-p10, 10.4-STABLE(r332321), and 10.4-RELEASE-p9, due to insufficient initialization of memory copied to userland in the Linux subsystem and Atheros wireless driver, small amounts of kernel memory may be disclosed to userland processes. Unprivileged authenticated local users may be able to access small amounts of privileged kernel data.
In FreeBSD 13.0-STABLE before n245117, 12.2-STABLE before r369551, 11.4-STABLE before r369559, 13.0-RC5 before p1, 12.2-RELEASE before p6, and 11.4-RELEASE before p9, copy-on-write logic failed to invalidate shared memory page mappings between multiple processes allowing an unprivileged process to maintain a mapping after it is freed, allowing the process to read private data belonging to other processes or the kernel.
Incomplete cleanup in specific special register write operations for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
An issue was discovered in the Login Password feature of the Password Manager component in Avast Antivirus 20.1.5069.562. An entered password continues to be stored in Windows main memory after a logout, and after a Lock Vault operation.
ICQwebmail client for ICQ 2000A creates a world readable temporary file during login and does not delete it, which allows local users to obtain sensitive information.
Oracle Formsbuilder 9.0.4 stores database usernames and passwords in a temporary file, which is not deleted after it is used, which allows local users to obtain sensitive information.
Nextcloud Android is the Android client for Nextcloud, a self-hosted productivity platform. Prior to version 3.19.0, sensitive tokens, images, and user related details exist after deletion of a user account. This could result in misuse of the former account holder's information. Nextcloud Android version 3.19.0 contains a patch for this issue. There are no known workarounds available.
An interaction between PGP 7.0.3 with the "wipe deleted files" option, when used on Windows Encrypted File System (EFS), creates a cleartext temporary files that cannot be wiped or deleted due to strong permissions, which could allow certain local users or attackers with physical access to obtain cleartext information.
Incomplete cleanup of multi-core shared buffers for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
Incomplete cleanup from specific special register read operations in some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
The issue was addressed with improved data deletion. This issue is fixed in iOS 13. Deleted calls remained visible on the device.
An issue existed where partially entered passcodes may not clear when the device went to sleep. This issue was addressed by clearing the passcode when a locked device sleeps. This issue is fixed in watchOS 5.2. A partially entered passcode may not clear when the device goes to sleep.
The contents of locked notes sometimes appeared in search results. This issue was addressed with improved data cleanup. This issue is fixed in macOS Catalina 10.15. A local user may be able to view a user’s locked notes.
A vulnerability in Cisco Application Policy Infrastructure Controller (APIC) Software could allow an unauthenticated, local attacker with physical access to obtain sensitive information from an affected device. The vulnerability is due to insecure removal of cleartext encryption keys stored on local partitions in the hard drive of an affected device. An attacker could exploit this vulnerability by retrieving data from the physical disk on the affected partition(s). A successful exploit could allow the attacker to retrieve encryption keys, possibly allowing the attacker to further decrypt other data and sensitive information on the device, which could lead to the disclosure of confidential information.
u'Information disclosure issue occurs as in current logic as secure touch is released without clearing the display session which can result in user reading the secure input while touch is in non-secure domain as secure display is active' in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables, Snapdragon Wired Infrastructure and Networking in APQ8009, APQ8017, APQ8053, APQ8076, APQ8096AU, APQ8098, Kamorta, MDM9150, MDM9205, MDM9206, MDM9607, MDM9650, MSM8905, MSM8909, MSM8917, MSM8920, MSM8937, MSM8940, MSM8953, MSM8996, MSM8996AU, MSM8998, Nicobar, QCM2150, QCS404, QCS405, QCS605, QCS610, QM215, Rennell, SA415M, SA515M, SA6155P, SC7180, SC8180X, SDA660, SDA845, SDM429, SDM429W, SDM439, SDM450, SDM630, SDM632, SDM636, SDM660, SDM670, SDM710, SDM845, SDM850, SDX24, SDX55, SM6150, SM7150, SM8150, SM8250, SXR1130, SXR2130
Incomplete cleanup in specific special register read operations for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
Incomplete cleanup of microarchitectural fill buffers on some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
A vulnerability in the installation process of Cisco HyperFlex Software could allow an authenticated, local attacker to read sensitive information. The vulnerability is due to insufficient cleanup of installation files. An attacker could exploit this vulnerability by accessing the residual installation files on an affected system. A successful exploit could allow the attacker to collect sensitive information regarding the configuration of the system.
RSA BSAFE SSL-J versions prior to 6.2.4 contain a Heap Inspection vulnerability that could allow an attacker with physical access to the system to recover sensitive key material.