Integer overflow in rgbimgmodule.c in the rgbimg module in Python 2.5 allows remote attackers to have an unspecified impact via a large image that triggers a buffer overflow. NOTE: this vulnerability exists because of an incomplete fix for CVE-2008-3143.12.
Multiple buffer overflows in the RLE decoder in the rgbimg module in Python 2.5 allow remote attackers to have an unspecified impact via an image file containing crafted data that triggers improper processing within the (1) longimagedata or (2) expandrow function.
In Python 3.8.4, sys.path restrictions specified in a python38._pth file are ignored, allowing code to be loaded from arbitrary locations. The <executable-name>._pth file (e.g., the python._pth file) is not affected.
Multiple integer overflows in imageop.c in the imageop module in Python 1.5.2 through 2.5.1 allow context-dependent attackers to break out of the Python VM and execute arbitrary code via large integer values in certain arguments to the crop function, leading to a buffer overflow, a different vulnerability than CVE-2007-4965 and CVE-2008-1679.
An XML External Entity (XXE) issue was discovered in Python through 3.9.1. The plistlib module no longer accepts entity declarations in XML plist files to avoid XML vulnerabilities.
CPython (aka Python) up to 2.7.13 is vulnerable to an integer overflow in the PyString_DecodeEscape function in stringobject.c, resulting in heap-based buffer overflow (and possible arbitrary code execution)
An integer overflow during the parsing of XML using the Expat library. This vulnerability affects Firefox < 50.
Multiple integer overflows in Python before 2.5.2 might allow context-dependent attackers to have an unknown impact via vectors related to (1) Include/pymem.h; (2) _csv.c, (3) _struct.c, (4) arraymodule.c, (5) audioop.c, (6) binascii.c, (7) cPickle.c, (8) cStringIO.c, (9) cjkcodecs/multibytecodec.c, (10) datetimemodule.c, (11) md5.c, (12) rgbimgmodule.c, and (13) stropmodule.c in Modules/; (14) bufferobject.c, (15) listobject.c, and (16) obmalloc.c in Objects/; (17) Parser/node.c; and (18) asdl.c, (19) ast.c, (20) bltinmodule.c, and (21) compile.c in Python/, as addressed by "checks for integer overflows, contributed by Google."
Multiple buffer overflows in Python 2.5.2 and earlier on 32bit platforms allow context-dependent attackers to cause a denial of service (crash) or have unspecified other impact via a long string that leads to incorrect memory allocation during Unicode string processing, related to the unicode_resize function and the PyMem_RESIZE macro.
The Keccak XKCP SHA-3 reference implementation before fdc6fef has an integer overflow and resultant buffer overflow that allows attackers to execute arbitrary code or eliminate expected cryptographic properties. This occurs in the sponge function interface.
Multiple integer overflows in Python 2.5.2 and earlier allow context-dependent attackers to have an unknown impact via vectors related to the (1) stringobject, (2) unicodeobject, (3) bufferobject, (4) longobject, (5) tupleobject, (6) stropmodule, (7) gcmodule, and (8) mmapmodule modules. NOTE: The expandtabs integer overflows in stringobject and unicodeobject in 2.5.2 are covered by CVE-2008-5031.
Integer overflow in _hashopenssl.c in the hashlib module in Python 2.5.2 and earlier might allow context-dependent attackers to defeat cryptographic digests, related to "partial hashlib hashing of data exceeding 4GB."
Integer signedness error in the zlib extension module in Python 2.5.2 and earlier allows remote attackers to execute arbitrary code via a negative signed integer, which triggers insufficient memory allocation and a buffer overflow.
Expat allows context-dependent attackers to cause a denial of service (crash) or possibly execute arbitrary code via a malformed input document, which triggers a buffer overflow.
Directory traversal vulnerability in the (1) extract and (2) extractall functions in the tarfile module in Python allows user-assisted remote attackers to overwrite arbitrary files via a .. (dot dot) sequence in filenames in a TAR archive, a related issue to CVE-2001-1267.
Python 3.x through 3.9.1 has a buffer overflow in PyCArg_repr in _ctypes/callproc.c, which may lead to remote code execution in certain Python applications that accept floating-point numbers as untrusted input, as demonstrated by a 1e300 argument to c_double.from_param. This occurs because sprintf is used unsafely.
Buffer overflow in the repr function in Python 2.3 through 2.6 before 20060822 allows context-dependent attackers to cause a denial of service and possibly execute arbitrary code via crafted wide character UTF-32/UCS-4 strings to certain scripts.
BZ2_decompress in decompress.c in bzip2 through 1.0.6 has an out-of-bounds write when there are many selectors.
The CGIHTTPServer module in Python 2.7.5 and 3.3.4 does not properly handle URLs in which URL encoding is used for path separators, which allows remote attackers to read script source code or conduct directory traversal attacks and execute unintended code via a crafted character sequence, as demonstrated by a %2f separator.
The SimpleXMLRPCServer library module in Python 2.2, 2.3 before 2.3.5, and 2.4, when used by XML-RPC servers that use the register_instance method to register an object without a _dispatch method, allows remote attackers to read or modify globals of the associated module, and possibly execute arbitrary code, via dotted attributes.
Buffer overflow in the getaddrinfo function in Python 2.2 before 2.2.2, when IPv6 support is disabled, allows remote attackers to execute arbitrary code via an IPv6 address that is obtained using DNS.
libImaging/PcxDecode.c in Pillow before 6.2.2 has a PCX P mode buffer overflow.
In Python 3 through 3.9.0, the Lib/test/multibytecodec_support.py CJK codec tests call eval() on content retrieved via HTTP.
Python 2.7.x through 2.7.16 and 3.x through 3.7.2 is affected by: Improper Handling of Unicode Encoding (with an incorrect netloc) during NFKC normalization. The impact is: Information disclosure (credentials, cookies, etc. that are cached against a given hostname). The components are: urllib.parse.urlsplit, urllib.parse.urlparse. The attack vector is: A specially crafted URL could be incorrectly parsed to locate cookies or authentication data and send that information to a different host than when parsed correctly. This is fixed in: v2.7.17, v2.7.17rc1, v2.7.18, v2.7.18rc1; v3.5.10, v3.5.10rc1, v3.5.7, v3.5.8, v3.5.8rc1, v3.5.8rc2, v3.5.9; v3.6.10, v3.6.10rc1, v3.6.11, v3.6.11rc1, v3.6.12, v3.6.9, v3.6.9rc1; v3.7.3, v3.7.3rc1, v3.7.4, v3.7.4rc1, v3.7.4rc2, v3.7.5, v3.7.5rc1, v3.7.6, v3.7.6rc1, v3.7.7, v3.7.7rc1, v3.7.8, v3.7.8rc1, v3.7.9.
libImaging/TgaRleDecode.c in Pillow 9.1.0 has a heap buffer overflow in the processing of invalid TGA image files.
marcador package in PyPI 0.1 through 0.13 included a code-execution backdoor.
The pygresql module 3.8.1 and 4.0 for Python does not properly support the PQescapeStringConn function, which might allow remote attackers to leverage escaping issues involving multibyte character encodings.
A security regression of CVE-2019-9636 was discovered in python since commit d537ab0ff9767ef024f26246899728f0116b1ec3 affecting versions 2.7, 3.5, 3.6, 3.7 and from v3.8.0a4 through v3.8.0b1, which still allows an attacker to exploit CVE-2019-9636 by abusing the user and password parts of a URL. When an application parses user-supplied URLs to store cookies, authentication credentials, or other kind of information, it is possible for an attacker to provide specially crafted URLs to make the application locate host-related information (e.g. cookies, authentication data) and send them to a different host than where it should, unlike if the URLs had been correctly parsed. The result of an attack may vary based on the application.
PIL.ImageMath.eval in Pillow before 9.0.0 allows evaluation of arbitrary expressions, such as ones that use the Python exec method. A lambda expression could also be used.
Python Software Foundation Python (CPython) version 2.7 contains a CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') vulnerability in shutil module (make_archive function) that can result in Denial of service, Information gain via injection of arbitrary files on the system or entire drive. This attack appear to be exploitable via Passage of unfiltered user input to the function. This vulnerability appears to have been fixed in after commit add531a1e55b0a739b0f42582f1c9747e5649ace.
The bluemonday sanitizer before 1.0.16 for Go, and before 0.0.8 for Python (in pybluemonday), does not properly enforce policies associated with the SELECT, STYLE, and OPTION elements.
An exploitable vulnerability exists in the Databook loading functionality of Tablib 0.11.4. A yaml loaded Databook can execute arbitrary python commands resulting in command execution. An attacker can insert python into loaded yaml to trigger this vulnerability.
Pillow through 8.2.0 and PIL (aka Python Imaging Library) through 1.1.7 allow an attacker to pass controlled parameters directly into a convert function to trigger a buffer overflow in Convert.c.
In Python before 3,9,5, the ipaddress library mishandles leading zero characters in the octets of an IP address string. This (in some situations) allows attackers to bypass access control that is based on IP addresses.
An issue was discovered in Pillow before 8.1.1. TiffDecode has a heap-based buffer overflow when decoding crafted YCbCr files because of certain interpretation conflicts with LibTIFF in RGBA mode. NOTE: this issue exists because of an incomplete fix for CVE-2020-35654.
Buffer overflow in the socket.recvfrom_into function in Modules/socketmodule.c in Python 2.5 before 2.7.7, 3.x before 3.3.4, and 3.4.x before 3.4rc1 allows remote attackers to execute arbitrary code via a crafted string.
libImaging/SgiRleDecode.c in Pillow before 6.2.2 has an SGI buffer overflow.
Python Image Library (PIL) 1.1.7 and earlier and Pillow 2.3 might allow remote attackers to execute arbitrary commands via shell metacharacters in unspecified vectors related to CVE-2014-1932, possibly JpegImagePlugin.py.
OX App Suite through 7.10.6 allows OS Command Injection via a serialized Java class to the Documentconverter API.
An issue in Horizon Business Services Inc. Caterease 16.0.1.1663 through 24.0.1.2405 and possibly later versions, allows a remote attacker to perform SQL Injection due to improper neutralization of special elements used in an SQL command.
A remote execution of arbitrary commands vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.5.x: 6.5.4.17 and below; Aruba Instant 8.3.x: 8.3.0.13 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.5 and below; Aruba Instant 8.7.x: 8.7.0.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
An issue in Horizon Business Services Inc. Caterease 16.0.1.1663 through 24.0.1.2405 and possibly later versions, allows a remote attacker to perform command line execution through SQL Injection due to improper neutralization of special elements used in an OS command.
An issue in Horizon Business Services Inc. Caterease 16.0.1.1663 through 24.0.1.2405 and possibly later versions, allows a remote attacker to expand control over the operating system from the database due to the execution of commands with unnecessary privileges.
Command Injection vulnerability in MagnusSolution magnusbilling 6.x and 7.x allows remote attackers to run arbitrary commands via unauthenticated HTTP request.
WFS-SR03 v1.0.3 was discovered to contain a command injection vulnerability via the pro_stor_canceltrans_handler_part_19 function.
TOTOLINK A7100RU V7.4cu.2313_B20191024 has a Command Injection vulnerability. An attacker can obtain a stable root shell through a specially constructed payload.
The package cookiecutter before 2.1.1 are vulnerable to Command Injection via hg argument injection. When calling the cookiecutter function from Python code with the checkout parameter, it is passed to the hg checkout command in a way that additional flags can be set. The additional flags can be used to perform a command injection.
D-Link DIR-868L B1 router firmware version FW2.05WWB02 contains an unauthenticated OS command injection vulnerability in the fileaccess.cgi component. The endpoint /dws/api/UploadFile accepts a pre_api_arg parameter that is passed directly to system-level shell execution functions without sanitization or authentication. Remote attackers can exploit this to execute arbitrary commands as root via crafted HTTP requests.
TOTOLINK A7100RU V7.4cu.2313_B20191024 is vulnerable to Command Injection.
webscript.pl in Open Ticket Request System (OTRS) 2.3.4 and earlier allows remote attackers to execute arbitrary commands via unspecified vectors, related to a "command injection vulnerability."