Netgear DGN3500 1.1.00.37 was discovered to contain a buffer overflow via the http_password parameter at setup.cgi.
The buffer overflow vulnerability in the CGI program of the VMG3625-T50B firmware version V5.50(ABPM.8)C0 could allow an authenticated remote attacker to cause denial of service (DoS) conditions by sending a crafted HTTP request to a vulnerable device.
A vulnerability classified as critical has been found in Tenda TX3 16.03.13.11_multi. This affects an unknown part of the file /goform/setMacFilterCfg. The manipulation of the argument deviceList leads to buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used.
A vulnerability classified as critical was found in Tenda TX3 16.03.13.11_multi. This vulnerability affects unknown code of the file /goform/SetStaticRouteCfg. The manipulation of the argument list leads to buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability has been found in Tenda TX3 16.03.13.11_multi and classified as critical. Affected by this vulnerability is an unknown functionality of the file /goform/setPptpUserList. The manipulation of the argument list leads to buffer overflow. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
A vulnerability, which was classified as critical, has been found in Tenda TX3 16.03.13.11_multi. This issue affects some unknown processing of the file /goform/SetNetControlList. The manipulation of the argument list leads to buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
Linksys E8450 v1.2.00.360516 was discovered to contain a buffer overflow vulnerability. The parsed field (anonymous_protect_status) is copied to the stack without length verification.
Linksys E8450 v1.2.00.360516 was discovered to contain a buffer overflow vulnerability. The parsed field (action) is copied to the stack without length verification.
ping reads raw IP packets from the network to process responses in the pr_pack() function. As part of processing a response ping has to reconstruct the IP header, the ICMP header and if present a "quoted packet," which represents the packet that generated an ICMP error. The quoted packet again has an IP header and an ICMP header. The pr_pack() copies received IP and ICMP headers into stack buffers for further processing. In so doing, it fails to take into account the possible presence of IP option headers following the IP header in either the response or the quoted packet. When IP options are present, pr_pack() overflows the destination buffer by up to 40 bytes. The memory safety bugs described above can be triggered by a remote host, causing the ping program to crash. The ping process runs in a capability mode sandbox on all affected versions of FreeBSD and is thus very constrained in how it can interact with the rest of the system at the point where the bug can occur.
A vulnerability in the SSL/TLS client of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper memory management when a device initiates SSL/TLS connections. An attacker could exploit this vulnerability by ensuring that the device will connect to an SSL/TLS server that is using specific encryption parameters. A successful exploit could allow the attacker to cause the affected device to unexpectedly reload, resulting in a DoS condition.
The Gluster file system through versions 3.12 and 4.1.4 is vulnerable to a buffer overflow in the 'features/index' translator via the code handling the 'GF_XATTR_CLRLK_CMD' xattr in the 'pl_getxattr' function. A remote authenticated attacker could exploit this on a mounted volume to cause a denial of service.
NETGEAR R7000 devices before 1.0.9.42 are affected by a buffer overflow by an authenticated user.
TP-Link WR886N 3.0 1.0.1 Build 150127 Rel.34123n is vulnerable to Buffer Overflow. Authenticated attackers can crash router httpd services via /userRpm/PingIframeRpm.htm request which contains redundant & in parameter.
A Buffer Overflow vulnerabilty exists in Miniftpd 1.0 in the do_mkd function in the ftpproto.c file, which could let a remote malicious user cause a Denial of Service.
An out-of-bounds memory access issue was found in Quick Emulator (QEMU) before 1.7.2 in the VNC display driver. This flaw could occur while refreshing the VNC display surface area in the 'vnc_refresh_server_surface'. A user inside a guest could use this flaw to crash the QEMU process.
The Active Directory configuration function in ASUS BMC’s firmware Web management page does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The specific function in ASUS BMC’s firmware Web management page (ActiveX configuration-1 acquisition) does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The specific function in ASUS BMC’s firmware Web management page (Remote image configuration setting) does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The Web Service configuration function in ASUS BMC’s firmware Web management page does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The Radius configuration function in ASUS BMC’s firmware Web management page does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The SMTP configuration function in ASUS BMC’s firmware Web management page does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The Radius configuration function in ASUS BMC’s firmware Web management page does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The CD media configuration function in ASUS BMC’s firmware Web management page does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The specific function in ASUS BMC’s firmware Web management page (Remote video configuration setting) does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The specific function in ASUS BMC’s firmware Web management page (Generate new certificate function) does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The specific function in ASUS BMC’s firmware Web management page (Generate SSL certificate function) does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
A buffer overflow vulnerability exists in the ArubaOS command line interface. Successful exploitation of this vulnerability results in a denial of service on the affected system.
A vulnerability, which was classified as critical, was found in Tenda TX3 16.03.13.11_multi. Affected is an unknown function of the file /goform/openSchedWifi. The manipulation of the argument schedStartTime/schedEndTime leads to buffer overflow. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used.
The Firmware update function in ASUS BMC’s firmware Web management page does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The LDAP configuration function in ASUS BMC’s firmware Web management page does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The specific function in ASUS BMC’s firmware Web management page (Audit log configuration setting) does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The specific function in ASUS BMC’s firmware Web management page (Generate new SSL certificate) does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.
The specific function in ASUS BMC’s firmware Web management page (Modify user’s information function) does not verify the string length entered by users, resulting in a Buffer overflow vulnerability. As obtaining the privileged permission, remote attackers use the leakage to abnormally terminate the Web service.