DevTools API not correctly gating on extension capability in DevTools in Google Chrome prior to 72.0.3626.81 allowed an attacker who convinced a user to install a malicious extension to read local files via a crafted Chrome Extension.
Insufficient policy enforcement in extensions in Google Chrome prior to 78.0.3904.70 allowed an attacker who convinced a user to install a malicious extension to leak cross-origin data via a crafted Chrome Extension.
Lack of access control checks in Instrumentation in Google Chrome prior to 65.0.3325.146 allowed a remote attacker who had compromised the renderer process to obtain memory metadata from privileged processes .
Inappropriate allowance of the setDownloadBehavior devtools protocol feature in Extensions in Google Chrome prior to 71.0.3578.80 allowed a remote attacker with control of an installed extension to access files on the local file system via a crafted Chrome Extension.
An issue was discovered in Symfony before 2.7.38, 2.8.31, 3.2.14, 3.3.13, 3.4-BETA5, and 4.0-BETA5. The current implementation of CSRF protection in Symfony (Version >=2) does not use different tokens for HTTP and HTTPS; therefore the token is subject to MITM attacks on HTTP and can then be used in an HTTPS context to do CSRF attacks.
A bug in the standard library ScalarMult implementation of curve P-256 for amd64 architectures in Go before 1.7.6 and 1.8.x before 1.8.2 causes incorrect results to be generated for specific input points. An adaptive attack can be mounted to progressively extract the scalar input to ScalarMult by submitting crafted points and observing failures to the derive correct output. This leads to a full key recovery attack against static ECDH, as used in popular JWT libraries.
In Tor before 0.2.5.16, 0.2.6 through 0.2.8 before 0.2.8.17, 0.2.9 before 0.2.9.14, 0.3.0 before 0.3.0.13, and 0.3.1 before 0.3.1.9, relays (that have incompletely downloaded descriptors) can pick themselves in a circuit path, leading to a degradation of anonymity, aka TROVE-2017-012.
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: JAXP). Supported versions that are affected are Oracle Java SE: 7u321, 8u311, 11.0.13, 17.0.1; Oracle GraalVM Enterprise Edition: 20.3.4 and 21.3.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle Java SE, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N).
Crafted CSS in an RSS feed can leak and reveal local path strings, which may contain user name. This vulnerability affects Thunderbird < 52.5.2.
Heap out-of-bound read in ParseJSS in VideoLAN VLC due to missing check of string length allows attackers to read heap uninitialized data via a crafted subtitles file.
libgcrypt before version 1.7.8 is vulnerable to a cache side-channel attack resulting into a complete break of RSA-1024 while using the left-to-right method for computing the sliding-window expansion. The same attack is believed to work on RSA-2048 with moderately more computation. This side-channel requires that attacker can run arbitrary software on the hardware where the private RSA key is used.
The Resource Timing API incorrectly revealed navigations in cross-origin iframes. This is a same-origin policy violation and could allow for data theft of URLs loaded by users. This vulnerability affects Firefox < 57, Firefox ESR < 52.5, and Thunderbird < 52.5.
Insufficient policy enforcement in Blink in Google Chrome prior to 74.0.3729.108 allowed a remote attacker to leak cross-origin data via a crafted HTML page.
Incorrect handling of origin taint checking in Canvas in Google Chrome prior to 72.0.3626.81 allowed a remote attacker to leak cross-origin data via a crafted HTML page.
Implementation error in QUIC Networking in Google Chrome prior to 72.0.3626.81 allowed an attacker running or able to cause use of a proxy server to obtain cleartext of transport encryption via malicious network proxy.
Using XMLHttpRequest, an attacker could have identified installed applications by probing error messages for loading external protocols. This vulnerability affects Thunderbird < 91.4.0, Firefox ESR < 91.4.0, and Firefox < 95.
im_vips2dz in /libvips/libvips/deprecated/im_vips2dz.c in libvips before 8.8.2 has an uninitialized variable which may cause the leakage of remote server path or stack address.
V8 in Google Chrome prior to 57.0.2987.98 for Mac, Windows, and Linux and 57.0.2987.108 for Android was missing a neutering check, which allowed a remote attacker to read values in memory via a crafted HTML page.
Use of an uninitialized value in Skia in Google Chrome prior to 61.0.3163.79 for Linux and Windows allowed a remote attacker to obtain potentially sensitive information from process memory via a crafted HTML page.
Use of an uninitialized value in Skia in Google Chrome prior to 60.0.3112.78 for Linux, Windows, and Mac allowed a remote attacker to obtain potentially sensitive information from process memory via a crafted HTML page.
Use of an uninitialized value in Skia in Google Chrome prior to 61.0.3163.79 for Mac, Windows, and Linux, and 61.0.3163.81 for Android, allowed a remote attacker to obtain potentially sensitive information from process memory via a crafted HTML page.
Under certain circumstances, asynchronous functions could have caused a navigation to fail but expose the target URL. This vulnerability affects Thunderbird < 91.4.0, Firefox ESR < 91.4.0, and Firefox < 95.
V8 in Google Chrome prior to 57.0.2987.98 for Mac, Windows, and Linux and 57.0.2987.108 for Android had insufficient policy enforcement, which allowed a remote attacker to spoof the location object via a crafted HTML page, related to Blink information disclosure.
There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH1024 private key among multiple clients, which is no longer an option since CVE-2016-0701. This only affects processors that support the AVX2 but not ADX extensions like Intel Haswell (4th generation). Note: The impact from this issue is similar to CVE-2017-3736, CVE-2017-3732 and CVE-2015-3193. OpenSSL version 1.0.2-1.0.2m and 1.1.0-1.1.0g are affected. Fixed in OpenSSL 1.0.2n. Due to the low severity of this issue we are not issuing a new release of OpenSSL 1.1.0 at this time. The fix will be included in OpenSSL 1.1.0h when it becomes available. The fix is also available in commit e502cc86d in the OpenSSL git repository.
Lack of correct bounds checking in Skia in Google Chrome prior to 73.0.3683.75 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page.
An information disclosure vulnerability exists in the iConfig proxy request of Zabbix server 2.4.X. A specially crafted iConfig proxy request can cause the Zabbix server to send the configuration information of any Zabbix proxy, resulting in information disclosure. An attacker can make requests from an active Zabbix proxy to trigger this vulnerability.
Redmine before 4.1.5 and 4.2.x before 4.2.3 may disclose the names of users on activity views due to an insufficient access filter.
OpenSSL 1.0.2 (starting from version 1.0.2b) introduced an "error state" mechanism. The intent was that if a fatal error occurred during a handshake then OpenSSL would move into the error state and would immediately fail if you attempted to continue the handshake. This works as designed for the explicit handshake functions (SSL_do_handshake(), SSL_accept() and SSL_connect()), however due to a bug it does not work correctly if SSL_read() or SSL_write() is called directly. In that scenario, if the handshake fails then a fatal error will be returned in the initial function call. If SSL_read()/SSL_write() is subsequently called by the application for the same SSL object then it will succeed and the data is passed without being decrypted/encrypted directly from the SSL/TLS record layer. In order to exploit this issue an application bug would have to be present that resulted in a call to SSL_read()/SSL_write() being issued after having already received a fatal error. OpenSSL version 1.0.2b-1.0.2m are affected. Fixed in OpenSSL 1.0.2n. OpenSSL 1.1.0 is not affected.
vim is vulnerable to Out-of-bounds Read
By exploiting the way Apache OpenOffice before 4.1.4 renders embedded objects, an attacker could craft a document that allows reading in a file from the user's filesystem. Information could be retrieved by the attacker by, e.g., using hidden sections to store the information, tricking the user into saving the document and convincing the user to send the document back to the attacker. The vulnerability is mitigated by the need for the attacker to know the precise file path in the target system, and the need to trick the user into saving the document and sending it back.
Insufficient policy validation in ServiceWorker in Google Chrome prior to 72.0.3626.81 allowed a remote attacker to bypass navigation restrictions via a crafted HTML page.
Apache Tomcat before 6.0.39, 7.x before 7.0.50, and 8.x before 8.0.0-RC10 allows attackers to obtain "Tomcat internals" information by leveraging the presence of an untrusted web application with a context.xml, web.xml, *.jspx, *.tagx, or *.tld XML document containing an external entity declaration in conjunction with an entity reference, related to an XML External Entity (XXE) issue.
An issue was discovered in Enigmail before 1.9.9. A remote attacker can obtain cleartext content by sending an encrypted data block (that the attacker cannot directly decrypt) to a victim, and relying on the victim to automatically decrypt that block and then send it back to the attacker as quoted text, aka the TBE-01-005 "replay" issue.
Uninitialized data in media in Google Chrome prior to 74.0.3729.108 allowed a remote attacker to obtain potentially sensitive information from process memory via a crafted video file.
An exposed debugging endpoint in the browser in Google Chrome on Android prior to 72.0.3626.81 allowed a local attacker to obtain potentially sensitive information from process memory via a crafted Intent.
Insufficient protection of permission UI in WebAPKs in Google Chrome on Android prior to 72.0.3626.81 allowed an attacker who convinced the user to install a malicious application to access privacy/security sensitive web APIs via a crafted APK.
Information leak in autofill in Google Chrome prior to 74.0.3729.108 allowed a remote attacker to obtain potentially sensitive information from process memory via a crafted HTML page.
Insufficient data validation in new tab page in Google Chrome prior to 96.0.4664.93 allowed a remote attacker to leak cross-origin data via a crafted HTML page.
lighttpd before 1.4.34, when SNI is enabled, configures weak SSL ciphers, which makes it easier for remote attackers to hijack sessions by inserting packets into the client-server data stream or obtain sensitive information by sniffing the network.
Insufficient policy enforcement in CORS in Google Chrome prior to 75.0.3770.80 allowed a remote attacker to leak cross-origin data via a crafted HTML page.
GraphicsMagick 1.3.26 is vulnerable to a memory information disclosure vulnerability found in the DescribeImage function of the magick/describe.c file, because of a heap-based buffer over-read. The portion of the code containing the vulnerability is responsible for printing the IPTC Profile information contained in the image. This vulnerability can be triggered with a specially crafted MIFF file. There is an out-of-bounds buffer dereference because certain increments are never checked.
There is a carry propagation bug in the MIPS32 and MIPS64 squaring procedure. Many EC algorithms are affected, including some of the TLS 1.3 default curves. Impact was not analyzed in detail, because the pre-requisites for attack are considered unlikely and include reusing private keys. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH private key among multiple clients, which is no longer an option since CVE-2016-0701. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0.0. It was addressed in the releases of 1.1.1m and 3.0.1 on the 15th of December 2021. For the 1.0.2 release it is addressed in git commit 6fc1aaaf3 that is available to premium support customers only. It will be made available in 1.0.2zc when it is released. The issue only affects OpenSSL on MIPS platforms. Fixed in OpenSSL 3.0.1 (Affected 3.0.0). Fixed in OpenSSL 1.1.1m (Affected 1.1.1-1.1.1l). Fixed in OpenSSL 1.0.2zc-dev (Affected 1.0.2-1.0.2zb).
Object lifecycle issue in SwiftShader in Google Chrome prior to 75.0.3770.80 allowed a remote attacker to potentially perform out of bounds memory access via a crafted HTML page.
IBM Tivoli Key Lifecycle Manager 2.5, 2.6, and 2.7 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 133559.
Insufficient policy enforcement in XMLHttpRequest in Google Chrome prior to 75.0.3770.80 allowed a remote attacker to leak cross-origin data via a crafted HTML page.
Insufficient data validation in dialogs in Google Chrome on OS X prior to 86.0.4240.75 allowed a remote attacker to obtain potentially sensitive information from disk via a crafted HTML page.
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: 2D). Supported versions that are affected are Java SE: 8u251, 11.0.7 and 14.0.1; Java SE Embedded: 8u251. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.1 Base Score 3.7 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N).
XMP Toolkit SDK versions 2021.07 (and earlier) are affected by an out-of-bounds read vulnerability that could lead to disclosure of sensitive memory. An attacker could leverage this vulnerability to bypass mitigations such as ASLR. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Resource size information leakage in Blink in Google Chrome prior to 75.0.3770.80 allowed a remote attacker to leak cross-origin data via a crafted HTML page.
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. While the vulnerability is in Java SE, Java SE Embedded, JRockit, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 6.8 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:N).