A heap-based buffer overflow vulnerability exists in the XML Decompression DecodeTreeBlock functionality of AT&T Labs Xmill 0.7. Within `DecodeTreeBlock` which is called during the decompression of an XMI file, a UINT32 is loaded from the file and used as trusted input as the length of a buffer. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the XML Decompression EnumerationUncompressor::UncompressItem functionality of AT&T Labs’ Xmill 0.7. A specially crafted XMI file can lead to remote code execution. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the XML Decompression LabelDict::Load functionality of AT&T Labs’ Xmill 0.7. A specially crafted XMI file can lead to remote code execution. An attacker can provide a malicious file to trigger this vulnerability.
A memory corruption vulnerability exists in the XML-parsing ParseAttribs functionality of AT&T Labs’ Xmill 0.7. A specially crafted XML file can lead to a heap buffer overflow. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the XML Decompression DecodeTreeBlock functionality of AT&T Labs Xmill 0.7. Within `DecodeTreeBlock` which is called during the decompression of an XMI file, a UINT32 is loaded from the file and used as trusted input as the length of a buffer. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the XML Decompression DecodeTreeBlock functionality of AT&T Labs Xmill 0.7. In the default case of DecodeTreeBlock a label is created via CurPath::AddLabel in order to track the label for later reference. An attacker can provide a malicious file to trigger this vulnerability.
A heap-based buffer overflow exists in XML Decompression DecodeTreeBlock in AT&T Labs Xmill 0.7. A crafted input file can lead to remote code execution. This is not the same as any of: CVE-2021-21810, CVE-2021-21811, CVE-2021-21812, CVE-2021-21815, CVE-2021-21825, CVE-2021-21826, CVE-2021-21828, CVE-2021-21829, or CVE-2021-21830. NOTE: This vulnerability only affects products that are no longer supported by the maintainer
The AT&T U-verse 9.2.2h0d83 firmware for the Arris NVG589, NVG599, and unspecified other devices, when IP Passthrough mode is not used, configures an sbdc.ha WAN TCP service on port 61001 with the bdctest account and the bdctest password, which allows remote attackers to obtain sensitive information (such as the Wi-Fi password) by leveraging knowledge of a hardware identifier, related to the Bulk Data Collection (BDC) mechanism defined in Broadband Forum technical reports.
The AT&T U-verse 9.2.2h0d83 firmware for the Arris NVG599 device, when IP Passthrough mode is not used, configures WAN access to a caserver https service with the tech account and an empty password, which allows remote attackers to obtain root privileges by establishing a session on port 49955 and then installing new software, such as BusyBox with "nc -l" support.
WinVNC 3.3.3 and earlier generates the same challenge string for multiple connections, which allows remote attackers to bypass VNC authentication by sniffing the challenge and response of other users.
A memory corruption vulnerability exists in the XML-parsing CreateLabelOrAttrib functionality of AT&T Labs’ Xmill 0.7. A specially crafted XML file can lead to a heap buffer overflow. An attacker can provide a malicious file to trigger this vulnerability.
The AT&T U-verse 9.2.2h0d83 firmware for the Arris NVG589 and NVG599 devices, when IP Passthrough mode is not used, configures ssh-permanent-enable WAN SSH logins to the remotessh account with the 5SaP9I26 password, which allows remote attackers to access a "Terminal shell v1.0" service, and subsequently obtain unrestricted root privileges, by establishing an SSH session and then entering certain shell metacharacters and BusyBox commands.
Within the function HandleFileArg the argument filepattern is under control of the user who passes it in from the command line. filepattern is passed directly to memcpy copying the path provided by the user into a staticly sized buffer without any length checks resulting in a stack-buffer overflow.
A stack-based buffer overflow vulnerability exists in the command-line-parsing HandleFileArg functionality of AT&T Labs’ Xmill 0.7. Within the function HandleFileArg the argument filepattern is under control of the user who passes it in from the command line. filepattern is passed directly to strcpy copying the path provided by the user into a static sized buffer without any length checks resulting in a stack-buffer overflow. An attacker can provide malicious input to trigger these vulnerabilities.
A stack-based buffer overflow vulnerability exists in the command-line-parsing HandleFileArg functionality of AT&T Labs' Xmill 0.7. Within the function HandleFileArg the argument filepattern is under control of the user who passes it in from the command line. filepattern is passed directly to strcpy copying the path provided by the user into a staticly sized buffer without any length checks resulting in a stack-buffer overflow. An attacker can provide malicious input to trigger this vulnerability.
RIOT-OS, an operating system that supports Internet of Things devices, contains a network stack with the ability to process 6LoWPAN frames. Prior to version 2022.10, an attacker can send a crafted frame to the device resulting in an out of bounds write in the packet buffer. The overflow can be used to corrupt other packets and the allocator metadata. Corrupting a pointer will easily lead to denial of service. While carefully manipulating the allocator metadata gives an attacker the possibility to write data to arbitrary locations and thus execute arbitrary code. Version 2022.10 fixes this issue. As a workaround, disable support for fragmented IP datagrams or apply the patches manually.
RIOT-OS, an operating system that supports Internet of Things devices, contains a network stack with the ability to process 6LoWPAN frames. Prior to version 2022.10, an attacker can send a crafted frame to the device resulting in a type confusion between IPv6 extension headers and a UDP header. This occurs while encoding a 6LoWPAN IPHC header. The type confusion manifests in an out of bounds write in the packet buffer. The overflow can be used to corrupt other packets and the allocator metadata. Corrupting a pointer will easily lead to denial of service. While carefully manipulating the allocator metadata gives an attacker the possibility to write data to arbitrary locations and thus execute arbitrary code. Version 2022.10 fixes this issue. As a workaround, apply the patches manually.
Buffer overflow in system firmware for EDK II may allow unauthenticated user to potentially enable escalation of privilege and/or denial of service via network access.
A memory corruption vulnerability exists in the Windows Server DHCP service when an attacker sends specially crafted packets to a DHCP failover server, aka 'Windows DHCP Server Remote Code Execution Vulnerability'.
A memory corruption vulnerability exists in the Windows DHCP client when an attacker sends specially crafted DHCP responses to a client, aka 'Windows DHCP Client Remote Code Execution Vulnerability'. This CVE ID is unique from CVE-2019-0698, CVE-2019-0726.
A memory corruption vulnerability exists in the Windows DHCP client when an attacker sends specially crafted DHCP responses to a client, aka 'Windows DHCP Client Remote Code Execution Vulnerability'. This CVE ID is unique from CVE-2019-0697, CVE-2019-0698.
In ixheaacd_adts_crc_start_reg of ixheaacd_adts_crc_check.c, there is a possible out of bounds write due to a missing bounds check. This could lead to remote escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android-9. Android ID: A-113261928.
D-Link N300 WI-FI Router DIR-605L v2.13B01 was discovered to contain a stack overflow via the FILECODE parameter at /goform/formLogin.
Windows Pragmatic General Multicast (PGM) Remote Code Execution Vulnerability
Google V8, as used in Google Chrome before 15.0.874.121, allows remote attackers to cause a denial of service or possibly have unspecified other impact via unknown vectors that trigger an out-of-bounds write operation.
A memory corruption vulnerability exists in the Windows Server DHCP service when an attacker sends specially crafted packets to a DHCP server, aka 'Windows DHCP Server Remote Code Execution Vulnerability'.
An out-of-bounds write vulnerability exists in the HTTP Server functionality of Weston Embedded uC-HTTP v3.01.01. A specially crafted network packet can lead to memory corruption. An attacker can send a network request to trigger this vulnerability.
Tenda AC18 V15.03.05.19 is vulnerable to Buffer Overflow via /goform/initIpAddrInfo.
Memory corruption in Modem while processing security related configuration before AS Security Exchange.
D-Link N300 WI-FI Router DIR-605L v2.13B01 was discovered to contain a stack overflow via the curTime parameter at /goform/formSetACLFilter.
Controller DoS due to stack overflow when decoding a message from the server. See Honeywell Security Notification for recommendations on upgrading and versioning.
A memory corruption vulnerability exists in the Windows DHCP client when an attacker sends specially crafted DHCP responses to a client. An attacker who successfully exploited the vulnerability could run arbitrary code on the client machine. To exploit the vulnerability, an attacker could send specially crafted DHCP responses to a client. The security update addresses the vulnerability by correcting how Windows DHCP clients handle certain DHCP responses.
A memory corruption vulnerability exists in the Windows DHCP client when an attacker sends specially crafted DHCP responses to a client, aka 'Windows DHCP Client Remote Code Execution Vulnerability'. This CVE ID is unique from CVE-2019-0697, CVE-2019-0726.
A heap-based buffer overflow vulnerability exists in the HTTP Server functionality of Weston Embedded uC-HTTP v3.01.01. A specially crafted set of network packets can lead to arbitrary code execution. An attacker can send a malicious packet to trigger this vulnerability.
Tenda AC18 V15.03.05.19 is vulnerable to Buffer Overflow via /goform/fromSetWirelessRepeat.
A memory corruption vulnerability exists in the Windows Server DHCP service when processing specially crafted packets, aka 'Windows DHCP Server Remote Code Execution Vulnerability'.
In impeg2d_mc_fullx_fully of impeg2d_mc.c there is a possible out of bound write due to missing bounds check. This could lead to remote arbitrary code execution with no additional execution privileges needed. User interaction is needed for exploitation.
Google V8, as used in Google Chrome before 13.0.782.215, allows remote attackers to cause a denial of service or possibly have unspecified other impact via unknown vectors that trigger an out-of-bounds write.
A stack buffer overflow vulnerability has been reported to affect QNAP device running QVR Elite, QVR Pro, QVR Guard. If exploited, this vulnerability allows attackers to execute arbitrary code. We have already fixed this vulnerability in the following versions of QVR Elite, QVR Pro, QVR Guard: QuTS hero h5.0.0: QVR Elite 2.1.4.0 (2021/12/06) and later QuTS hero h4.5.4: QVR Elite 2.1.4.0 (2021/12/06) and later QTS 5.0.0: QVR Elite 2.1.4.0 (2021/12/06) and later QTS 4.5.4: QVR Elite 2.1.4.0 (2021/12/06) and later QTS 4.5.4: QVR Pro 2.1.3.0 (2021/12/06) and later QTS 5.0.0: QVR Pro 2.1.3.0 (2021/12/06) and later QTS 4.5.4: QVR Guard 2.1.3.0 (2021/12/06) and later QTS 5.0.0: QVR Guard 2.1.3.0 (2021/12/06) and later
A remote code execution vulnerability exists in Microsoft Exchange software when the software fails to properly handle objects in memory, aka "Microsoft Exchange Memory Corruption Vulnerability." This affects Microsoft Exchange Server.
In the deserialization constructor of NanoAppFilter.java, there is a possible loss of data due to type confusion. This could lead to local escalation of privilege in the system server with no additional execution privileges needed. User interaction is not needed for exploitation.
D-Link DIR878 DIR_878_FW120B05 was discovered to contain a stack overflow in the sub_475FB0 function. This vulnerability allows attackers to cause a Denial of Service (DoS) or execute arbitrary code via a crafted payload.
In handle_app_cur_val_response of dtif_rc.cc, there is a possible stack buffer overflow due to a missing bounds check. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.
D-Link DIR878 DIR_878_FW120B05 was discovered to contain a stack overflow in the sub_48AF78 function. This vulnerability allows attackers to cause a Denial of Service (DoS) or execute arbitrary code via a crafted payload.
Server or Console Station DoS due to heap overflow occurring during the handling of a specially crafted message for a specific configuration operation. See Honeywell Security Notification for recommendations on upgrading and versioning.
FreeRDP prior to version 2.0.0-rc4 contains a Heap-Based Buffer Overflow in function zgfx_decompress_segment() that results in a memory corruption and probably even a remote code execution.
rdesktop versions up to and including v1.8.3 contain a Heap-Based Buffer Overflow in function process_plane() that results in a memory corruption and probably even a remote code execution.
D-Link N300 WI-FI Router DIR-605L v2.13B01 was discovered to contain a stack overflow via the config.smtp_email_subject parameter at /goform/formSetEmail.
D-Link DIR882 DIR882A1_FW110B02 was discovered to contain a stack overflow in the sub_48AC20 function. This vulnerability allows attackers to cause a Denial of Service (DoS) or execute arbitrary code via a crafted payload.
In prop2cfg of btif_storage.cc, there is a possible out of bounds write due to an incorrect bounds check. This could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.