TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseReshape` results in a denial of service based on a `CHECK`-failure. The implementation(https://github.com/tensorflow/tensorflow/blob/e87b51ce05c3eb172065a6ea5f48415854223285/tensorflow/core/kernels/sparse_reshape_op.cc#L40) has no validation that the input arguments specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are the only affected versions.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from `tf.raw_ops.LoadAndRemapMatrix`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) assumes that the `ckpt_path` is always a valid scalar. However, an attacker can send any other tensor as the first argument of `LoadAndRemapMatrix`. This would cause the rank `CHECK` in `scalar<T>()()` to trigger and terminate the process. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedConv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/00e9a4d67d76703fa1aee33dac582acf317e0e81/tensorflow/core/kernels/quantized_conv_ops.cc#L257-L259) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthwiseConv` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/depthwise_conv.cc#L287-L288). An attacker can craft a model such that `input`'s fourth dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat<T>()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.RFFT`. Eigen code operating on an empty matrix can trigger on an assertion and will cause program termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Passing invalid arguments (e.g., discovered via fuzzing) to `tf.raw_ops.SparseCountSparseOutput` results in segfault. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalMaxPoolGrad` triggers an undefined behavior if one of the input tensors is empty. The code is also vulnerable to a denial of service attack as a `CHECK` condition becomes false and aborts the process. The implementation(https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) fails to validate that input and output tensors are not empty and are of the same rank. Each of these unchecked assumptions is responsible for the above issues. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.AddManySparseToTensorsMap`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/kernels/sparse_tensors_map_ops.cc#L257) takes the values specified in `sparse_shape` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `ParseAttrValue`(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/framework/attr_value_util.cc#L397-L453) can be tricked into stack overflow due to recursion by giving in a specially crafted input. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.SparseConcat`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) takes the values specified in `shapes[0]` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.CTCGreedyDecoder`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1615440b17b364b875eb06f43d087381f1460a65/tensorflow/core/kernels/ctc_decoder_ops.cc#L37-L50) has a `CHECK_LT` inserted to validate some invariants. When this condition is false, the program aborts, instead of returning a valid error to the user. This abnormal termination can be weaponized in denial of service attacks. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a division by zero to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L513-L522) computes a divisor based on user provided data (i.e., the shape of the tensors given as arguments). If all shapes are empty then `work_unit_size` is 0. Since there is no check for this case before division, this results in a runtime exception, with potential to be abused for a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.FusedBatchNorm`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/828f346274841fa7505f7020e88ca36c22e557ab/tensorflow/core/kernels/fused_batch_norm_op.cc#L295-L297) performs a division based on the last dimension of the `x` tensor. Since this is controlled by the user, an attacker can trigger a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L289-L295) computes a modulo operation without validating that the divisor is not zero. Since `vector_num_elements` is determined based on input shapes(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L522-L544), a user can trigger scenarios where this quantity is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedMul`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55900e961ed4a23b438392024912154a2c2f5e85/tensorflow/core/kernels/quantized_mul_op.cc#L188-L198) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The API of `tf.raw_ops.SparseCross` allows combinations which would result in a `CHECK`-failure and denial of service. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3d782b7d47b1bf2ed32bd4a246d6d6cadc4c903d/tensorflow/core/kernels/sparse_cross_op.cc#L114-L116) is tricked to consider a tensor of type `tstring` which in fact contains integral elements. Fixing the type confusion by preventing mixing `DT_STRING` and `DT_INT64` types solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Calling of non-existent provider in Samsung Members prior to version 2.4.81.13 (in Android O(8.1) and below) and 3.8.00.13 (in Android P(9.0) and above) allows unauthorized actions including denial of service attack by hijacking the provider.
Assuming a shell privilege is gained, an improper exception handling for multi_sim_bar_show_on_qspanel value in SystemUI prior to SMR Oct-2021 Release 1 allows an attacker to cause a permanent denial of service in user device before factory reset.
In camera driver, there is a possible use after free due to a logic error. This could lead to local denial of service with System execution privileges needed
In isp, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed. User interaction is needed for exploitation. Patch ID: ALPS09071481; Issue ID: MSV-1730.
In flashc, there is a possible system crash due to an uncaught exception. This could lead to local denial of service with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS08541757; Issue ID: ALPS08541758.
In memory management driver, there is a possible system crash due to a missing bounds check. This could lead to local denial of service with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS05403499; Issue ID: ALPS05381071.
In addSubInfo of SubscriptionController.java, there is a possible way to force the user to make a factory reset due to a logic error in the code. This could lead to local denial of service with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12Android ID: A-197327688
In memory management driver, there is a possible system crash due to a missing bounds check. This could lead to local denial of service with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS05403499; Issue ID: ALPS05393787.
In gpu driver, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In gsp driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In gpu driver, there is a possible out of bounds write due to a incorrect bounds check. This could lead to local denial of service with System execution privileges needed
In gsp driver, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In gpu driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In gsp driver, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In gnss service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In TeleService, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In Gnss service, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In gpu driver, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In ril service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In gpu driver, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In gnss service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In jpg driver, there is a possible out of bounds write due to improper input validation. This could lead to local denial of service with System execution privileges needed
An issue was discovered on LG mobile devices with Android OS 7.0, 7.1, 7.2, 8.0, 8.1, and 9.0 software. A TrustZone trusted application can crash via crafted input. The LG ID is LVE-SMP-190003 (May 2019).
An issue was discovered on LG mobile devices with Android OS 7.0, 7.1, 7.2, 8.0, and 8.1 software. A TZ trusted application can crash via crafted input. The LG ID is LVE-SMP-190005 (July 2019).
In ril service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In ril service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In faceid service, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In ril service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
Improper input validationation for some Intel Unison software may allow a privileged user to potentially enable denial of service via local access.
In urild service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In urild service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In autotest driver, there is a possible out of bounds write due to improper input validation. This could lead to local denial of service with System execution privileges needed
In media service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed