In Music service, there is a missing permission check. This could lead to local denial of service in Music service with no additional execution privileges needed.
In face detect driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service in kernel.
In sensor driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service in kernel.
In sensor driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service in kernel.
In sensor driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service in kernel.
In sensor driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service in kernel.
In music service, there is a missing permission check. This could lead to local denial of service in music service with no additional execution privileges needed.
In sensor driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service in kernel.
In contacts service, there is a missing permission check. This could lead to local denial of service in Contacts service with no additional execution privileges needed.
In contacts service, there is a missing permission check. This could lead to local denial of service in contacts service with no additional execution privileges needed.
In wlan driver, there is a possible missing params check. This could lead to local denial of service in wlan services.
In wlan driver, there is a possible missing params check. This could lead to local denial of service in wlan services.
In contacts service, there is a missing permission check. This could lead to local denial of service in contacts service with no additional execution privileges needed.
In contacts service, there is a missing permission check. This could lead to local denial of service in contacts service with no additional execution privileges needed.
Improper Authorization vulnerability in setDualDARPolicyCmd prior to SMR Sep-2022 Release 1 allows local attackers to cause local permanent denial of service.
In multiple functions of AppOpsService.java, there is a possible way to saturate the content of /data/system/appops_accesses.xml due to resource exhaustion. This could lead to local denial of service with no additional execution privileges needed. User interaction is not needed for exploitation.
TensorFlow is an open source platform for machine learning. In affected versions TensorFlow's Grappler optimizer has a use of unitialized variable. If the `train_nodes` vector (obtained from the saved model that gets optimized) does not contain a `Dequeue` node, then `dequeue_node` is left unitialized. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SplitV` can trigger a segfault is an attacker supplies negative arguments. This occurs whenever `size_splits` contains more than one value and at least one value is negative. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions while calculating the size of the output within the `tf.range` kernel, there is a conditional statement of type `int64 = condition ? int64 : double`. Due to C++ implicit conversion rules, both branches of the condition will be cast to `double` and the result would be truncated before the assignment. This result in overflows. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions if `tf.image.resize` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions TensorFlow allows tensor to have a large number of dimensions and each dimension can be as large as desired. However, the total number of elements in a tensor must fit within an `int64_t`. If an overflow occurs, `MultiplyWithoutOverflow` would return a negative result. In the majority of TensorFlow codebase this then results in a `CHECK`-failure. Newer constructs exist which return a `Status` instead of crashing the binary. This is similar to CVE-2021-29584. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the shape inference function for `Transpose` is vulnerable to a heap buffer overflow. This occurs whenever `perm` contains negative elements. The shape inference function does not validate that the indices in `perm` are all valid. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
In setStream of WallpaperManager.java, there is a possible way to cause a permanent DoS due to improper input validation. This could lead to local denial of service with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12 Android-12LAndroid ID: A-204087139
In PackageManager, there is a possible permanent denial of service due to resource exhaustion. This could lead to local denial of service with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12 Android-12LAndroid ID: A-67862680
In Bluetooth, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12LAndroid ID: A-205989472
In sortSimPhoneAccountsForEmergency of CreateConnectionProcessor.java, there is a possible prevention of access to emergency calling due to an unhandled exception. In rare instances, this could lead to local denial of service with User execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12Android ID: A-208267659
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L126) uses the `axis` value as the size argument to `absl::InlinedVector` constructor. But, the constructor uses an unsigned type for the argument, so the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit 96f364a1ca3009f98980021c4b32be5fdcca33a1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, and TensorFlow 2.4.3, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions providing a negative element to `num_elements` list argument of `tf.raw_ops.TensorListReserve` causes the runtime to abort the process due to reallocating a `std::vector` to have a negative number of elements. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/list_kernels.cc#L312) calls `std::vector.resize()` with the new size controlled by input given by the user, without checking that this input is valid. We have patched the issue in GitHub commit 8a6e874437670045e6c7dc6154c7412b4a2135e2. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
In multiple functions of SnoozeHelper.java, there is a possible persistent denial of service due to resource exhaustion. This could lead to local denial of service with no additional execution privileges needed. User interaction is not needed for exploitation.
TensorFlow is an end-to-end open source platform for machine learning. The code for `tf.raw_ops.UncompressElement` can be made to trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/compression_ops.cc#L50-L53) obtains a pointer to a `CompressedElement` from a `Variant` tensor and then proceeds to dereference it for decompressing. There is no check that the `Variant` tensor contained a `CompressedElement`, so the pointer is actually `nullptr`. We have patched the issue in GitHub commit 7bdf50bb4f5c54a4997c379092888546c97c3ebd. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. This is caused by the MLIR optimization of `L2NormalizeReduceAxis` operator. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70) unconditionally dereferences a pointer to an iterator to a vector without checking that the vector has elements. We have patched the issue in GitHub commit d6b57f461b39fd1aa8c1b870f1b974aac3554955. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
In writeUserLP of UserManagerService.java, device policies are serialized with an incorrect tag due to a logic error in the code. This could lead to local denial of service when policies are deserialized on reboot with no additional execution privileges needed. User interaction is not needed for exploitation.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.StringNGrams` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/string_ngrams_op.cc#L184) calls `reserve` on a `tstring` with a value that sometimes can be negative if user supplies negative `ngram_widths`. The `reserve` method calls `TF_TString_Reserve` which has an `unsigned long` argument for the size of the buffer. Hence, the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit c283e542a3f422420cfdb332414543b62fc4e4a5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
The updateMessageStatus function in Android 5.1.1 and earlier allows local users to cause a denial of service (NULL pointer exception and process crash).
TensorFlow is an end-to-end open source platform for machine learning. When a user does not supply arguments that determine a valid sparse tensor, `tf.raw_ops.SparseTensorSliceDataset` implementation can be made to dereference a null pointer. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) has some argument validation but fails to consider the case when either `indices` or `values` are provided for an empty sparse tensor when the other is not. If `indices` is empty, then [code that performs validation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If `indices` as provided by the user is empty, then `indices` in the C++ code above is backed by an empty `std::vector`, hence calling `indices->dim_size(0)` results in null pointer dereferencing (same as calling `std::vector::at()` on an empty vector). We have patched the issue in GitHub commit 02cc160e29d20631de3859c6653184e3f876b9d7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a denial of service in `boosted_trees_create_quantile_stream_resource` by using negative arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantile_ops.cc#L96) does not validate that `num_streams` only contains non-negative numbers. In turn, [this results in using this value to allocate memory](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantiles/quantile_stream_resource.h#L31-L40). However, `reserve` receives an unsigned integer so there is an implicit conversion from a negative value to a large positive unsigned. This results in a crash from the standard library. We have patched the issue in GitHub commit 8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
An issue was discovered on LG mobile devices with Android OS 7.0, 7.1, 7.2, 8.0, and 8.1 software. A TZ trusted application can crash via crafted input. The LG ID is LVE-SMP-190005 (July 2019).
In ril service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In ril service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
In Network Adapter Service, there is a possible missing permission check. This could lead to local denial of service with no additional execution privileges needed
In wlan driver, there is a possible missing params check. This could lead to local denial of service in wlan services.
In wifi service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with no additional execution privileges needed
In engineermode services, there is a missing permission check. This could lead to local denial of service in engineermode services.
In dialer service, there is a possible missing permission check. This could lead to local denial of service with no additional execution privileges.
In video decoder, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with no additional execution privileges needed
In gnss driver, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service in wlan services.
In wifi service, there is a possible out of bounds write due to a missing bounds check. This could lead to local denial of service with no additional execution privileges needed
In wlan driver, there is a possible missing params check. This could lead to local denial of service in wlan services.
In engineermode services, there is a missing permission check. This could lead to local denial of service in engineermode services.
In engineermode services, there is a missing permission check. This could lead to local denial of service in engineermode services.