Trusty TLK contains a vulnerability in the NVIDIA TLK kernel where an integer overflow in the tz_map_shared_mem function can bypass boundary checks, which might lead to denial of service.
NVIDIA GPU Display Driver for Windows and Linux, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape or IOCTL in which improper validation of a user pointer may lead to denial of service.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys), where a NULL pointer dereference in the kernel, created within user mode code, may lead to a denial of service in the form of a system crash.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager kernel driver, where a vGPU can cause resource starvation among other vGPUs hosted on the same GPU, which may lead to denial of service.
NVIDIA vGPU manager contains a vulnerability in the vGPU plugin, in which input data is not validated, which may lead to unexpected consumption of resources, which in turn may lead to denial of service. This affects vGPU version 8.x (prior to 8.6) and version 11.0 (prior to 11.3).
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for private IOCTLs, where an attacker with local unprivileged system access may cause a NULL pointer dereference, which may lead to denial of service in a component beyond the vulnerable component.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it can dereference a NULL pointer, which may lead to denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8).
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handlers for all control calls with embedded parameters where dereferencing an untrusted pointer may lead to denial of service.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it can dereference a NULL pointer, which may lead to denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8).
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager kernel mode driver (nvidia.ko), in which a pointer to a user-space buffer is not validated before it is dereferenced, which may lead to denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8).
NVIDIA GPU Display Driver for Windows, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape in which the software does not perform or incorrectly performs an authorization check when an actor attempts to access a resource or perform an action, which may lead to denial of service.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it can dereference a NULL pointer, which may lead to denial of service.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it can deadlock, which may lead to denial of service.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it can lead to floating point exceptions, which may lead to denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8).
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin, in which it can dereference a NULL pointer, which may lead to denial of service. This affects vGPU version 8.x (prior to 8.5), version 10.x (prior to 10.4) and version 11.0.
NVIDIA vGPU graphics driver for guest OS contains a vulnerability in which an incorrect resource clean up on a failure path can impact the guest VM, leading to denial of service.
NVIDIA Virtual GPU Manager, all versions, contains a vulnerability in the vGPU plugin in which an input index value is incorrectly validated which may lead to denial of service.
NVIDIA Virtual GPU Manager and the guest drivers contain a vulnerability in vGPU plugin, in which there is the potential to execute privileged operations, which may lead to denial of service. This affects vGPU version 8.x (prior to 8.4), version 9.x (prior to 9.4) and version 10.x (prior to 10.3).
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin, in which an input data size is not validated, which may lead to tampering or denial of service. This affects vGPU version 8.x (prior to 8.5), version 10.x (prior to 10.4) and version 11.0.
NVIDIA Virtual GPU Manager contains a vulnerability in the kernel module (nvidia.ko), where a null pointer dereference may occur, which may lead to denial of service.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape, where a NULL pointer dereference may lead to a system crash.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape, where improper input validation can cause denial of service.
Trusty contains a vulnerability in the NVIDIA TLK kernel function where a lack of checks allows the exploitation of an integer overflow through a specific SMC call that is triggered by the user, which may lead to denial of service.
NVIDIA Virtual GPU Manager, all versions, contains a vulnerability in which the provision of an incorrectly sized buffer by a guest VM leads to GPU out-of-bound access, which may lead to a denial of service.
NVIDIA Virtual GPU Manager, all versions, contains a vulnerability in the vGPU plugin, in which an input index value is incorrectly validated, which may lead to denial of service.
Bootloader contains a vulnerability in access permission settings where unauthorized software may be able to overwrite NVIDIA MB2 code, which would result in limited denial of service.
NVIDIA GPU Display Driver for Windows and Linux, R450 and R460 driver branch, contains a vulnerability where the software uses a reference count to manage a resource that is incorrectly updated, which may lead to denial of service.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the DirectX 11 user mode driver (nvwgf2um/x.dll), in which a specially crafted shader can cause an out of bounds access, leading to denial of service.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) scheduler, in which the software does not properly limit the number or frequency of interactions that it has with an actor, such as the number of incoming requests, which may lead to denial of service.
NVIDIA DCGM for Linux contains a vulnerability in HostEngine (server component) where a user may cause a heap-based buffer overflow through the bound socket. A successful exploit of this vulnerability may lead to denial of service and data tampering.
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer where an out-of-bounds write can lead to denial of service and data tampering.
NVIDIA DGX-2 contains a vulnerability in OFBD where a user with high privileges and a pre-conditioned heap can cause an access beyond a buffers end, which may lead to code execution, escalation of privileges, denial of service, and information disclosure.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer handler, where an out-of-bounds write can lead to denial of service and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer, where an out-of-bounds write can lead to denial of service, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer, where an out-of-bounds write can lead to denial of service and data tampering.
NVIDIA DGX-2 SBIOS contains a vulnerability in Bds, where a user with high privileges can cause a write beyond the bounds of an indexable resource, which may lead to code execution, denial of service, compromised integrity, and information disclosure.
NVIDIA GPU driver for Windows and Linux contains a vulnerability where a user can cause an out-of-bounds write. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA CUDA Toolkit contains a vulnerability in command `cuobjdump` where a user may cause an out-of-bound write by passing in a malformed ELF file. A successful exploit of this vulnerability may lead to code execution or denial of service.
NVIDIA nvJPEG2000 library contains a vulnerability where an attacker can cause an out-of-bounds write issue by means of a specially crafted JPEG2000 file. A successful exploit of this vulnerability might lead to code execution and data tampering.
NVIDIA GPU display driver for Windows and Linux contains a vulnerability where data is written past the end or before the beginning of a buffer. A successful exploit of this vulnerability might lead to information disclosure, denial of service, or data tampering.
NVIDIA nvJPEG2000 library contains a vulnerability where an attacker can cause an out-of-bounds write issue by means of a specially crafted JPEG2000 file. A successful exploit of this vulnerability might lead to code execution and data tampering.
Trusty contains a vulnerability in all trusted applications (TAs) where the stack cookie was not randomized, which might result in stack-based buffer overflow, leading to denial of service, escalation of privileges, and information disclosure.
Bootloader contains a vulnerability in NVIDIA MB2 where potential heap overflow might cause corruption of the heap metadata, which might lead to arbitrary code execution, denial of service, and information disclosure during secure boot.
Bootloader contains a vulnerability in NVIDIA MB2 where a potential heap overflow might lead to denial of service or escalation of privileges.
NVIDIA Tegra kernel driver contains a vulnerability in NVIDIA NVDEC, where a user with high privileges might be able to read from or write to a memory location that is outside the intended boundary of the buffer, which may lead to denial of service, Information disclosure, loss of Integrity, or possible escalation of privileges.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer handler, where an out-of-bounds access may lead to denial of service or data tampering.
NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability in the Python backend, where an attacker could cause an out-of-bounds write. A successful exploit of this vulnerability might lead to code execution, denial of service, data tampering, and information disclosure.
NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability in the Python backend, where an attacker could cause an out-of-bounds write by sending a request. A successful exploit of this vulnerability might lead to remote code execution, denial of service, data tampering, or information disclosure.
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin and the host driver kernel module, in which the potential exists to write to a memory location that is outside the intended boundary of the frame buffer memory allocated to guest operating systems, which may lead to denial of service or information disclosure. This affects vGPU version 8.x (prior to 8.5), version 10.x (prior to 10.4) and version 11.0.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where an input index is not validated, which may lead to buffer overrun, which in turn may cause data tampering, information disclosure, or denial of service.