An issue was discovered in the Multipart Request Parser in Django 3.2 before 3.2.18, 4.0 before 4.0.10, and 4.1 before 4.1.7. Passing certain inputs (e.g., an excessive number of parts) to multipart forms could result in too many open files or memory exhaustion, and provided a potential vector for a denial-of-service attack.
A regular expression based DoS vulnerability in Action Dispatch <6.1.7.1 and <7.0.4.1 related to the If-None-Match header. A specially crafted HTTP If-None-Match header can cause the regular expression engine to enter a state of catastrophic backtracking, when on a version of Ruby below 3.2.0. This can cause the process to use large amounts of CPU and memory, leading to a possible DoS vulnerability All users running an affected release should either upgrade or use one of the workarounds immediately.
RPCoRDMA dissector crash in Wireshark 4.0.0 to 4.0.4 and 3.6.0 to 3.6.12 allows denial of service via packet injection or crafted capture file
In ZeroMQ before version 4.3.3, there is a denial-of-service vulnerability. Users with TCP transport public endpoints, even with CURVE/ZAP enabled, are impacted. If a raw TCP socket is opened and connected to an endpoint that is fully configured with CURVE/ZAP, legitimate clients will not be able to exchange any message. Handshakes complete successfully, and messages are delivered to the library, but the server application never receives them. This is patched in version 4.3.3.
The Network Block Device (NBD) server in Quick Emulator (QEMU) before 2.11 is vulnerable to a denial of service issue. It could occur if a client sent large option requests, making the server waste CPU time on reading up to 4GB per request. A client could use this flaw to keep the NBD server from serving other requests, resulting in DoS.
A flaw was found in dovecot 2.0 up to 2.2.33 and 2.3.0. An abort of SASL authentication results in a memory leak in dovecot's auth client used by login processes. The leak has impact in high performance configuration where same login processes are reused and can cause the process to crash due to memory exhaustion.
When there are multiple ranges in a range request, Apache Traffic Server (ATS) will read the entire object from cache. This can cause performance problems with large objects in cache. This affects versions 6.0.0 to 6.2.2 and 7.0.0 to 7.1.3. To resolve this issue users running 6.x users should upgrade to 6.2.3 or later versions and 7.x users should upgrade to 7.1.4 or later versions.
The SdpContents::Session::Medium::parse function in resip/stack/SdpContents.cxx in reSIProcate 1.10.2 allows remote attackers to cause a denial of service (memory consumption) by triggering many media connections.
Rack is a modular Ruby web server interface. Carefully crafted Range headers can cause a server to respond with an unexpectedly large response. Responding with such large responses could lead to a denial of service issue. Vulnerable applications will use the `Rack::File` middleware or the `Rack::Utils.byte_ranges` methods (this includes Rails applications). The vulnerability is fixed in 3.0.9.1 and 2.2.8.1.
A denial of service flaw was found in OpenSSL 0.9.8, 1.0.1, 1.0.2 through 1.0.2h, and 1.1.0 in the way the TLS/SSL protocol defined processing of ALERT packets during a connection handshake. A remote attacker could use this flaw to make a TLS/SSL server consume an excessive amount of CPU and fail to accept connections from other clients.
mod_auth_openidc is an OpenID Certified™ authentication and authorization module for the Apache 2.x HTTP server that implements the OpenID Connect Relying Party functionality. In affected versions missing input validation on mod_auth_openidc_session_chunks cookie value makes the server vulnerable to a denial of service (DoS) attack. An internal security audit has been conducted and the reviewers found that if they manipulated the value of the mod_auth_openidc_session_chunks cookie to a very large integer, like 99999999, the server struggles with the request for a long time and finally gets back with a 500 error. Making a few requests of this kind caused our server to become unresponsive. Attackers can craft requests that would make the server work very hard (and possibly become unresponsive) and/or crash with minimal effort. This issue has been addressed in version 2.4.15.2. Users are advised to upgrade. There are no known workarounds for this vulnerability.
strongSwan before 5.9.8 allows remote attackers to cause a denial of service in the revocation plugin by sending a crafted end-entity (and intermediate CA) certificate that contains a CRL/OCSP URL that points to a server (under the attacker's control) that doesn't properly respond but (for example) just does nothing after the initial TCP handshake, or sends an excessive amount of application data.
Those using Jettison to parse untrusted XML or JSON data may be vulnerable to Denial of Service attacks (DOS). If the parser is running on user supplied input, an attacker may supply content that causes the parser to crash by Out of memory. This effect may support a denial of service attack.
An issue in the fetch() method in the BasicProfile class of org.ini4j through version v0.5.4 allows attackers to cause a Denial of Service (DoS) via unspecified vectors.
An issue has been found in PowerDNS Authoritative Server before 3.4.11 and 4.0.2 allowing a remote, unauthenticated attacker to cause a denial of service by opening a large number of TCP connections to the web server. If the web server runs out of file descriptors, it triggers an exception and terminates the whole PowerDNS process. While it's more complicated for an unauthorized attacker to make the web server run out of file descriptors since its connection will be closed just after being accepted, it might still be possible.
Jetty is a Java based web server and servlet engine. An HTTP/2 SSL connection that is established and TCP congested will be leaked when it times out. An attacker can cause many connections to end up in this state, and the server may run out of file descriptors, eventually causing the server to stop accepting new connections from valid clients. The vulnerability is patched in 9.4.54, 10.0.20, 11.0.20, and 12.0.6.
Cloudflare Quiche (through version 0.19.1/0.20.0) was affected by an unlimited resource allocation vulnerability causing rapid increase of memory usage of the system running quiche server or client. A remote attacker could take advantage of this vulnerability by repeatedly sending an unlimited number of 1-RTT CRYPTO frames after previously completing the QUIC handshake. Exploitation was possible for the duration of the connection which could be extended by the attacker. quiche 0.19.2 and 0.20.1 are the earliest versions containing the fix for this issue.
net/http in Go before 1.16.12 and 1.17.x before 1.17.5 allows uncontrolled memory consumption in the header canonicalization cache via HTTP/2 requests.
The resolver in nginx before 1.8.1 and 1.9.x before 1.9.10 does not properly limit CNAME resolution, which allows remote attackers to cause a denial of service (worker process resource consumption) via vectors related to arbitrary name resolution.
moment is a JavaScript date library for parsing, validating, manipulating, and formatting dates. Affected versions of moment were found to use an inefficient parsing algorithm. Specifically using string-to-date parsing in moment (more specifically rfc2822 parsing, which is tried by default) has quadratic (N^2) complexity on specific inputs. Users may notice a noticeable slowdown is observed with inputs above 10k characters. Users who pass user-provided strings without sanity length checks to moment constructor are vulnerable to (Re)DoS attacks. The problem is patched in 2.29.4, the patch can be applied to all affected versions with minimal tweaking. Users are advised to upgrade. Users unable to upgrade should consider limiting date lengths accepted from user input.
OctoRPKI does not limit the depth of a certificate chain, allowing for a CA to create children in an ad-hoc fashion, thereby making tree traversal never end.
The Bzip2 decompression decoder function doesn't allow setting size restrictions on the decompressed output data (which affects the allocation size used during decompression). All users of Bzip2Decoder are affected. The malicious input can trigger an OOME and so a DoS attack
A possible denial of service vulnerability exists in Rack <2.0.9.1, <2.1.4.1 and <2.2.3.1 in the multipart parsing component of Rack.
Drivers are not always robust to extremely large draw calls and in some cases this scenario could have led to a crash. This vulnerability affects Firefox < 119, Firefox ESR < 115.4, and Thunderbird < 115.4.1.
The trim-newlines package before 3.0.1 and 4.x before 4.0.1 for Node.js has an issue related to regular expression denial-of-service (ReDoS) for the .end() method.
The documentation of Apache Tomcat 10.1.0-M1 to 10.1.0-M14, 10.0.0-M1 to 10.0.20, 9.0.13 to 9.0.62 and 8.5.38 to 8.5.78 for the EncryptInterceptor incorrectly stated it enabled Tomcat clustering to run over an untrusted network. This was not correct. While the EncryptInterceptor does provide confidentiality and integrity protection, it does not protect against all risks associated with running over any untrusted network, particularly DoS risks.
The Snappy frame decoder function doesn't restrict the chunk length which may lead to excessive memory usage. Beside this it also may buffer reserved skippable chunks until the whole chunk was received which may lead to excessive memory usage as well. This vulnerability can be triggered by supplying malicious input that decompresses to a very big size (via a network stream or a file) or by sending a huge skippable chunk.
Unbound before 1.10.1 has Insufficient Control of Network Message Volume, aka an "NXNSAttack" issue. This is triggered by random subdomains in the NSDNAME in NS records.
XStream is a Java library to serialize objects to XML and back again. In XStream before version 1.4.16, there is a vulnerability which may allow a remote attacker to occupy a thread that consumes maximum CPU time and will never return. No user is affected, who followed the recommendation to setup XStream's security framework with a whitelist limited to the minimal required types. If you rely on XStream's default blacklist of the Security Framework, you will have to use at least version 1.4.16.
PowerDNS Recursor from 4.1.0 up to and including 4.3.0 does not sufficiently defend against amplification attacks. An issue in the DNS protocol has been found that allow malicious parties to use recursive DNS services to attack third party authoritative name servers. The attack uses a crafted reply by an authoritative name server to amplify the resulting traffic between the recursive and other authoritative name servers. Both types of service can suffer degraded performance as an effect. This is triggered by random subdomains in the NSDNAME in NS records. PowerDNS Recursor 4.1.16, 4.2.2 and 4.3.1 contain a mitigation to limit the impact of this DNS protocol issue.
RabbitMQ all versions prior to 3.8.16 are prone to a denial of service vulnerability due to improper input validation in AMQP 1.0 client connection endpoint. A malicious user can exploit the vulnerability by sending malicious AMQP messages to the target RabbitMQ instance having the AMQP 1.0 plugin enabled.
XStream is a Java library to serialize objects to XML and back again. In XStream before version 1.4.16, there is vulnerability which may allow a remote attacker to allocate 100% CPU time on the target system depending on CPU type or parallel execution of such a payload resulting in a denial of service only by manipulating the processed input stream. No user is affected who followed the recommendation to setup XStream's security framework with a whitelist limited to the minimal required types. If you rely on XStream's default blacklist of the Security Framework, you will have to use at least version 1.4.16.
Two four letter word commands "wchp/wchc" are CPU intensive and could cause spike of CPU utilization on Apache ZooKeeper server if abused, which leads to the server unable to serve legitimate client requests. Apache ZooKeeper thru version 3.4.9 and 3.5.2 suffer from this issue, fixed in 3.4.10, 3.5.3, and later.
A flaw was found in all Samba versions before 4.10.17, before 4.11.11 and before 4.12.4 in the way it processed NetBios over TCP/IP. This flaw allows a remote attacker could to cause the Samba server to consume excessive CPU use, resulting in a denial of service. This highest threat from this vulnerability is to system availability.
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023.
The sctp_assoc_lookup_asconf_ack function in net/sctp/associola.c in the SCTP implementation in the Linux kernel through 3.17.2 allows remote attackers to cause a denial of service (panic) via duplicate ASCONF chunks that trigger an incorrect uncork within the side-effect interpreter.
qemu/qemu_monitor.c in libvirt allows attackers to cause a denial of service (memory consumption) via a large QEMU reply.
A flaw was found in OpenEXR's B44Compressor. This flaw allows an attacker who can submit a crafted file to be processed by OpenEXR, to exhaust all memory accessible to the application. The highest threat from this vulnerability is to system availability.
In nghttp2 before version 1.41.0, the overly large HTTP/2 SETTINGS frame payload causes denial of service. The proof of concept attack involves a malicious client constructing a SETTINGS frame with a length of 14,400 bytes (2400 individual settings entries) over and over again. The attack causes the CPU to spike at 100%. nghttp2 v1.41.0 fixes this vulnerability. There is a workaround to this vulnerability. Implement nghttp2_on_frame_recv_callback callback, and if received frame is SETTINGS frame and the number of settings entries are large (e.g., > 32), then drop the connection.
Sympa 6.2.38 through 6.2.52 allows remote attackers to cause a denial of service (disk consumption from temporary files, and a flood of notifications to listmasters) via a series of requests with malformed parameters.
bzip2 allows remote attackers to cause a denial of service (hard drive consumption) via a crafted bzip2 file that causes an infinite loop (a.k.a "decompression bomb").
Apache ATS 6.0.0 to 6.2.3, 7.0.0 to 7.1.9, and 8.0.0 to 8.0.6 is vulnerable to a HTTP/2 slow read attack.
In Apache HTTP server versions 2.4.37 and prior, by sending request bodies in a slow loris way to plain resources, the h2 stream for that request unnecessarily occupied a server thread cleaning up that incoming data. This affects only HTTP/2 (mod_http2) connections.
nginx before versions 1.15.6 and 1.14.1 has a vulnerability in the implementation of HTTP/2 that can allow for excessive memory consumption. This issue affects nginx compiled with the ngx_http_v2_module (not compiled by default) if the 'http2' option of the 'listen' directive is used in a configuration file.
nginx before versions 1.15.6 and 1.14.1 has a vulnerability in the implementation of HTTP/2 that can allow for excessive CPU usage. This issue affects nginx compiled with the ngx_http_v2_module (not compiled by default) if the 'http2' option of the 'listen' directive is used in a configuration file.
An issue was discovered in Asterisk through 19.x. When using STIR/SHAKEN, it is possible to download files that are not certificates. These files could be much larger than what one would expect to download, leading to Resource Exhaustion. This is fixed in 16.25.2, 18.11.2, and 19.3.2.
Nokogiri is an open source XML and HTML library for Ruby. Nokogiri `< v1.13.4` contains an inefficient regular expression that is susceptible to excessive backtracking when attempting to detect encoding in HTML documents. Users are advised to upgrade to Nokogiri `>= 1.13.4`. There are no known workarounds for this issue.
sflow decode package does not employ sufficient packet sanitisation which can lead to a denial of service attack. Attackers can craft malformed packets causing the process to consume large amounts of memory resulting in a denial of service.
regex is an implementation of regular expressions for the Rust language. The regex crate features built-in mitigations to prevent denial of service attacks caused by untrusted regexes, or untrusted input matched by trusted regexes. Those (tunable) mitigations already provide sane defaults to prevent attacks. This guarantee is documented and it's considered part of the crate's API. Unfortunately a bug was discovered in the mitigations designed to prevent untrusted regexes to take an arbitrary amount of time during parsing, and it's possible to craft regexes that bypass such mitigations. This makes it possible to perform denial of service attacks by sending specially crafted regexes to services accepting user-controlled, untrusted regexes. All versions of the regex crate before or equal to 1.5.4 are affected by this issue. The fix is include starting from regex 1.5.5. All users accepting user-controlled regexes are recommended to upgrade immediately to the latest version of the regex crate. Unfortunately there is no fixed set of problematic regexes, as there are practically infinite regexes that could be crafted to exploit this vulnerability. Because of this, it us not recommend to deny known problematic regexes.
A vulnerability was found in openvswitch. A limitation in the implementation of userspace packet parsing can allow a malicious user to send a specially crafted packet causing the resulting megaflow in the kernel to be too wide, potentially causing a denial of service. The highest threat from this vulnerability is to system availability.