NoMachine Enterprise Desktop is affected by Integer Overflow. IOCTL Handler 0x22001B in the NoMachine Enterprise Desktop above 4.0.346 and below 7.7.4 allow local attackers to execute arbitrary code in kernel mode or cause a denial of service (memory corruption and OS crash) via specially crafted I/O Request Packet.
NoMachine Server is affected by Integer Overflow. IOCTL Handler 0x22001B in the NoMachine Server above 4.0.346 and below 7.7.4 allow local attackers to execute arbitrary code in kernel mode or cause a denial of service (memory corruption and OS crash) via specially crafted I/O Request Packet.
NoMachine Enterprise Client is affected by Integer Overflow. IOCTL Handler 0x22001B in the NoMachine Enterprise Client above 4.0.346 and below 7.7.4 allow local attackers to execute arbitrary code in kernel mode or cause a denial of service (memory corruption and OS crash) via specially crafted I/O Request Packet.
Unspecified vulnerability in nxconfigure.sh in NoMachine NX Node 3.x before 3.5.0-4 and NX Server 3.x before 3.5.0-5 allows local users to read arbitrary files via unknown vectors.
An uninitialised stack variable in the nxfuse component that is part of the Open Source DokanFS library shipped with NoMachine 6.0.66_2 and earlier allows a local low privileged user to gain elevation of privileges on Windows 7 (32 and 64bit), and denial of service for Windows 8 and 10.
NoMachine Enterprise Client is affected by Buffer Overflow. IOCTL Handler 0x22001B in the NoMachine Enterprise Client above 4.0.346 and below 7.7.4 allow local attackers to execute arbitrary code in kernel mode or cause a denial of service (memory corruption and OS crash) via specially crafted I/O Request Packet.
NoMachine Enterprise Desktop is affected by Buffer Overflow. IOCTL Handler 0x22001B in the NoMachine Enterprise Desktop above 4.0.346 and below 7.7.4 allow local attackers to execute arbitrary code in kernel mode or cause a denial of service (memory corruption and OS crash) via specially crafted I/O Request Packet.
NoMachine Cloud Server is affected by Buffer Overflow. IOCTL Handler 0x22001B in the NoMachine Cloud Server above 4.0.346 and below 7.7.4 allow local attackers to execute arbitrary code in kernel mode or cause a denial of service (memory corruption and OS crash) via specially crafted I/O Request Packet.
NoMachine Server is affected by Buffer Overflow. IOCTL Handler 0x22001B in the NoMachine Server above 4.0.346 and below 7.7.4 allow local attackers to execute arbitrary code in kernel mode or cause a denial of service (memory corruption and OS crash) via specially crafted I/O Request Packet.
Integer overflow in the rds_rdma_pages function in net/rds/rdma.c in the Linux kernel allows local users to cause a denial of service (crash) and possibly execute arbitrary code via a crafted iovec struct in a Reliable Datagram Sockets (RDS) request, which triggers a buffer overflow.
Integer overflow in net/can/bcm.c in the Controller Area Network (CAN) implementation in the Linux kernel before 2.6.27.53, 2.6.32.x before 2.6.32.21, 2.6.34.x before 2.6.34.6, and 2.6.35.x before 2.6.35.4 allows attackers to execute arbitrary code or cause a denial of service (system crash) via crafted CAN traffic.
Integer overflow in the ethtool_get_rxnfc function in net/core/ethtool.c in the Linux kernel before 2.6.33.7 on 32-bit platforms allows local users to cause a denial of service or possibly have unspecified other impact via an ETHTOOL_GRXCLSRLALL ethtool command with a large info.rule_cnt value that triggers a buffer overflow, a different vulnerability than CVE-2010-3084.
This vulnerability allows local attackers to escalate privileges on affected installations of Parallels Desktop 15.1.4. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. The specific flaw exists within the prl_hypervisor module. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to escalate privileges and execute code in the context of the kernel. Was ZDI-CAN-11217.
Windows Kernel Elevation of Privilege Vulnerability
Integer overflow in the load_multiboot function in hw/i386/multiboot.c in QEMU (aka Quick Emulator) allows local guest OS users to execute arbitrary code on the host via crafted multiboot header address values, which trigger an out-of-bounds write.
In the sendFormatChange function of ACodec, there is a possible integer overflow which could lead to an out-of-bounds write. This could lead to a local elevation of privilege enabling code execution as a privileged process with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: 8.0, 8.1. Android ID: A-67737022.
Integer overflow in Memory Manager in Microsoft Windows XP SP2 and SP3, Server 2003 SP1 and SP2, Vista Gold and SP1, and Server 2008 allows local users to gain privileges via a crafted application that triggers an erroneous decrement of a variable, related to validation of parameters for Virtual Address Descriptors (VADs) and a "memory allocation mapping error," aka "Virtual Address Descriptor Elevation of Privilege Vulnerability."
NVIDIA driver contains an integer overflow vulnerability which could cause a use after free and possibly lead to an elevation of privilege enabling code execution as a privileged process. This issue is rated as high. Version: N/A. Android ID: A-37776156. References: N-CVE-2017-0869.
In ged, there is a possible out of bounds write due to an integer overflow. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS05838808; Issue ID: ALPS05838808.
The ring_buffer_resize function in kernel/trace/ring_buffer.c in the profiling subsystem in the Linux kernel before 4.6.1 mishandles certain integer calculations, which allows local users to gain privileges by writing to the /sys/kernel/debug/tracing/buffer_size_kb file.
Integer overflow in the mem_check_range function in drivers/infiniband/sw/rxe/rxe_mr.c in the Linux kernel before 4.9.10 allows local users to cause a denial of service (memory corruption), obtain sensitive information from kernel memory, or possibly have unspecified other impact via a write or read request involving the "RDMA protocol over infiniband" (aka Soft RoCE) technology.
An exploitable integer overflow exists in the Joyent SmartOS 20161110T013148Z Hyprlofs file system. The vulnerability is present in the Ioctl system call with the command HYPRLOFS_ADD_ENTRIES when dealing with native file systems. An attacker can craft an input that can cause a kernel panic and potentially be leveraged into a full privilege escalation vulnerability. This vulnerability is distinct from CVE-2016-9031.
All versions of NVIDIA GPU Display Driver contain a vulnerability in the kernel mode layer handler where multiple integer overflows may cause improper memory allocation leading to a denial of service or potential escalation of privileges.
Integer overflow in the amap_alloc1 function in OpenBSD 5.8 and 5.9 allows local users to execute arbitrary code with kernel privileges via a large size value.
Integer Overflow or Wraparound vulnerability in io_uring of Linux Kernel allows local attacker to cause memory corruption and escalate privileges to root. This issue affects: Linux Kernel versions prior to 5.4.189; version 5.4.24 and later versions.
An integer overflow flaw was found in the Linux kernel’s virtio device driver code in the way a user triggers the vhost_vdpa_config_validate function. This flaw allows a local user to crash or potentially escalate their privileges on the system.
Integer overflow in the bhyve hypervisor in FreeBSD 10.1, 10.2, 10.3, and 11.0 when configured with a large amount of guest memory, allows local users to gain privilege via a crafted device descriptor.
AmZetta Amzetta zPortal DVM Tools is affected by Integer Overflow. IOCTL Handler 0x22001B in the Amzetta zPortal DVM Tools <= v3.3.148.148 allow local attackers to execute arbitrary code in kernel mode or cause a denial of service (memory corruption and OS crash) via specially crafted I/O Request Packet.
FlexiHub For Windows is affected by Integer Overflow. IOCTL Handler 0x22001B in the FlexiHub For Windows above 2.0.4340 below 5.3.14268 allow local attackers to execute arbitrary code in kernel mode or cause a denial of service (memory corruption and OS crash) via specially crafted I/O Request Packet.
Storage Spaces Controller Elevation of Privilege Vulnerability
Storage Spaces Controller Elevation of Privilege Vulnerability
This vulnerability allows local attackers to escalate privileges on affected installations of Parallels Desktop 16.0.1-48919. An attacker must first obtain the ability to execute low-privileged code on the target guest system in order to exploit this vulnerability. The specific flaw exists within the Toolgate component. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of the hypervisor. Was ZDI-CAN-11924.
Storage Spaces Controller Elevation of Privilege Vulnerability
fs/seq_file.c in the Linux kernel 3.16 through 5.13.x before 5.13.4 does not properly restrict seq buffer allocations, leading to an integer overflow, an Out-of-bounds Write, and escalation to root by an unprivileged user, aka CID-8cae8cd89f05.
This vulnerability allows local attackers to escalate privileges on affected installations of Parallels Desktop 16.1.2-49151. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. The specific flaw exists within the Parallels Tools component. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of the kernel on the target guest system. Was ZDI-CAN-12791.
Possible integer overflow due to improper validation of command length parameters while processing WMI command in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music
Possible integer overflow in access control initialization interface due to lack and size and address validation in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking
Integer signedness error in bspatch.c in bspatch in bsdiff, as used in Apple OS X before 10.11.6 and other products, allows remote attackers to execute arbitrary code or cause a denial of service (heap-based buffer overflow) via a crafted patch file.
An issue was discovered in the Linux kernel 4.4 through 5.7.1. drivers/tty/vt/keyboard.c has an integer overflow if k_ascii is called several times in a row, aka CID-b86dab054059. NOTE: Members in the community argue that the integer overflow does not lead to a security issue in this case.
Integer overflow in nvhost_job.c in the NVIDIA video driver for Android, Shield TV before OTA 3.3, Shield Table before OTA 4.4, and Shield Table TK1 before OTA 1.5 allows local users to cause a denial of service (system crash) via unspecified vectors, which triggers a buffer overflow.
Multiple integer overflows in the Pre-EFI Initialization (PEI) boot phase in the Capsule Update feature in the UEFI implementation in EDK2 allow physically proximate attackers to bypass intended access restrictions by providing crafted data that is not properly handled during the coalescing phase.
A component of the HarmonyOS has a Integer Overflow or Wraparound vulnerability. Local attackers may exploit this vulnerability to cause memory overwriting.
u'Integer overflow can cause a buffer overflow due to lack of table length check in the extensible boot Loader during the validation of security metadata while processing objects to be loaded' in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking in MDM9205, QCM4290, QCS405, QCS410, QCS4290, QCS610, QSM8250, SA415M, SA515M, SA6145P, SA6150P, SA6155, SA6155P, SA8150P, SA8155, SA8155P, SA8195P, SC7180, SC8180X, SC8180X+SDX55, SC8180XP, SDA640, SDA845, SDA855, SDM1000, SDM640, SDM830, SDM845, SDM850, SDX24, SDX50M, SDX55, SDX55M, SM4125, SM4250, SM4250P, SM6115, SM6115P, SM6150, SM6150P, SM6250, SM6250P, SM6350, SM7125, SM7150, SM7150P, SM7225, SM7250, SM7250P, SM8150, SM8150P, SM8250, SXR2130, SXR2130P
A component of the HarmonyOS has a Integer Overflow or Wraparound vulnerability. Local attackers may exploit this vulnerability to cause memory overwriting.
Unintended reads and writes by NS EL2 in access control driver due to lack of check of input validation in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Wired Infrastructure and Networking
u'Possible integer overflow to heap overflow while processing command due to lack of check of packet length received' in Snapdragon Auto, Snapdragon Compute, Snapdragon Mobile in QSM8350, SA6145P, SA6150P, SA6155, SA6155P, SA8150P, SA8155P, SA8195P, SDX55M, SM8250, SM8350, SM8350P, SXR2130, SXR2130P
Integer overflow in the Drive Execution Environment (DXE) phase in the Capsule Update feature in the UEFI implementation in EDK2 allows physically proximate attackers to bypass intended access restrictions via crafted data.
Possible integer overflow due to improper length check while updating grace period and count record in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Wired Infrastructure and Networking
Possible integer overflow can occur due to improper length check while calculating count and grace period in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Industrial IOT, Snapdragon Mobile
Possible integer overflow due to improper length check while flashing an image in Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Voice & Music