Varnish Cache, with HTTP/2 enabled, allows request smuggling and VCL authorization bypass via a large Content-Length header for a POST request. This affects Varnish Enterprise 6.0.x before 6.0.8r3, and Varnish Cache 5.x and 6.x before 6.5.2, 6.6.x before 6.6.1, and 6.0 LTS before 6.0.8.
The parser in accepts requests with a space (SP) right after the header name before the colon. This can lead to HTTP Request Smuggling (HRS) in llhttp < v2.1.4 and < v6.0.6.
Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 allow two copies of a header field in an HTTP request (for example, two Transfer-Encoding header fields). In this case, Node.js identifies the first header field and ignores the second. This can lead to HTTP Request Smuggling.
HTTP::Daemon is a simple http server class written in perl. Versions prior to 6.15 are subject to a vulnerability which could potentially be exploited to gain privileged access to APIs or poison intermediate caches. It is uncertain how large the risks are, most Perl based applications are served on top of Nginx or Apache, not on the `HTTP::Daemon`. This library is commonly used for local development and tests. Users are advised to update to resolve this issue. Users unable to upgrade may add additional request handling logic as a mitigation. After calling `my $rqst = $conn->get_request()` one could inspect the returned `HTTP::Request` object. Querying the 'Content-Length' (`my $cl = $rqst->header('Content-Length')`) will show any abnormalities that should be dealt with by a `400` response. Expected strings of 'Content-Length' SHOULD consist of either a single non-negative integer, or, a comma separated repetition of that number. (that is `42` or `42, 42, 42`). Anything else MUST be rejected.
It was discovered in Undertow that the code that parsed the HTTP request line permitted invalid characters. This could be exploited, in conjunction with a proxy that also permitted the invalid characters but with a different interpretation, to inject data into the HTTP response. By manipulating the HTTP response the attacker could poison a web-cache, perform an XSS attack, or obtain sensitive information from requests other than their own.
Puma is a simple, fast, multi-threaded, parallel HTTP 1.1 server for Ruby/Rack applications. When using Puma behind a proxy that does not properly validate that the incoming HTTP request matches the RFC7230 standard, Puma and the frontend proxy may disagree on where a request starts and ends. This would allow requests to be smuggled via the front-end proxy to Puma. The vulnerability has been fixed in 5.6.4 and 4.3.12. Users are advised to upgrade as soon as possible. Workaround: when deploying a proxy in front of Puma, turning on any and all functionality to make sure that the request matches the RFC7230 standard.
In Waitress through version 1.4.0, if a proxy server is used in front of waitress, an invalid request may be sent by an attacker that bypasses the front-end and is parsed differently by waitress leading to a potential for HTTP request smuggling. Specially crafted requests containing special whitespace characters in the Transfer-Encoding header would get parsed by Waitress as being a chunked request, but a front-end server would use the Content-Length instead as the Transfer-Encoding header is considered invalid due to containing invalid characters. If a front-end server does HTTP pipelining to a backend Waitress server this could lead to HTTP request splitting which may lead to potential cache poisoning or unexpected information disclosure. This issue is fixed in Waitress 1.4.1 through more strict HTTP field validation.
HttpObjectDecoder.java in Netty before 4.1.44 allows an HTTP header that lacks a colon, which might be interpreted as a separate header with an incorrect syntax, or might be interpreted as an "invalid fold."
HttpObjectDecoder.java in Netty before 4.1.44 allows a Content-Length header to be accompanied by a second Content-Length header, or by a Transfer-Encoding header.
An issue was discovered in the tiny_http crate through 2020-06-16 for Rust. HTTP Request smuggling can occur via a malformed Transfer-Encoding header.
Open redirect vulnerability in the drupal_goto function in Drupal 6.x before 6.38, when used with PHP before 5.4.7, allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via a double-encoded URL in the "destination" parameter.
LimeSurvey 2.6.x before 2.6.7, 2.7x.x before 2.73.1, and 3.x before 3.4.2 mishandles application/controller/InstallerController.php after installation, which allows remote attackers to access the configuration file.
webhooks/base.py in Anymail (aka django-anymail) before 1.2.1 is prone to a timing attack vulnerability on the WEBHOOK_AUTHORIZATION secret, which allows remote attackers to post arbitrary e-mail tracking events.
python-docutils allows insecure usage of temporary files
In Rhonabwy through 1.1.13, HMAC signature verification uses a strcmp function that is vulnerable to side-channel attacks, because it stops the comparison when the first difference is spotted in the two signatures. (The fix uses gnutls_memcmp, which has constant-time execution.)
Directory traversal vulnerability in framework/Image/Image.php in Horde before 3.2.4 and 3.3.3 and Horde Groupware before 1.1.5 allows remote attackers to include and execute arbitrary local files via directory traversal sequences in the Horde_Image driver name.
RT (aka Request Tracker) before 4.0.23 and 4.2.x before 4.2.10 allows remote attackers to hijack sessions via an RSS feed URL.
The ACL plugin in Dovecot before 1.1.4 treats negative access rights as if they are positive access rights, which allows attackers to bypass intended access restrictions.
Authorization Bypass Through User-Controlled Key vulnerability in Apache ZooKeeper. If SASL Quorum Peer authentication is enabled in ZooKeeper (quorum.auth.enableSasl=true), the authorization is done by verifying that the instance part in SASL authentication ID is listed in zoo.cfg server list. The instance part in SASL auth ID is optional and if it's missing, like 'eve@EXAMPLE.COM', the authorization check will be skipped. As a result an arbitrary endpoint could join the cluster and begin propagating counterfeit changes to the leader, essentially giving it complete read-write access to the data tree. Quorum Peer authentication is not enabled by default. Users are recommended to upgrade to version 3.9.1, 3.8.3, 3.7.2, which fixes the issue. Alternately ensure the ensemble election/quorum communication is protected by a firewall as this will mitigate the issue. See the documentation for more details on correct cluster administration.
Apache XmlGraphics Commons 2.4 and earlier is vulnerable to server-side request forgery, caused by improper input validation by the XMPParser. By using a specially-crafted argument, an attacker could exploit this vulnerability to cause the underlying server to make arbitrary GET requests. Users should upgrade to 2.6 or later.
A vulnerability was found in libssh's server-side state machine before versions 0.7.6 and 0.8.4. A malicious client could create channels without first performing authentication, resulting in unauthorized access.
The default configuration in cURL and libcurl 7.10.6 before 7.36.0 re-uses (1) SCP, (2) SFTP, (3) POP3, (4) POP3S, (5) IMAP, (6) IMAPS, (7) SMTP, (8) SMTPS, (9) LDAP, and (10) LDAPS connections, which might allow context-dependent attackers to connect as other users via a request, a similar issue to CVE-2014-0015.
Mercurial version 4.5 and earlier contains a Incorrect Access Control (CWE-285) vulnerability in Protocol server that can result in Unauthorized data access. This attack appear to be exploitable via network connectivity. This vulnerability appears to have been fixed in 4.5.1.
Shibboleth XMLTooling-C before 1.6.4, as used in Shibboleth Service Provider before 2.6.1.4 on Windows and other products, mishandles digital signatures of user data, which allows remote attackers to obtain sensitive information or conduct impersonation attacks via crafted XML data. NOTE: this issue exists because of an incomplete fix for CVE-2018-0486.
A blind Server-Side Request Forgery (SSRF) vulnerability was found in Moodle. This flaw exists due to insufficient validation of user-supplied input in LTI provider library. The library does not utilise Moodle's inbuilt cURL helper, which resulted in a blind SSRF risk. An attacker can send a specially crafted HTTP request and trick the application to initiate requests to arbitrary systems. This vulnerability allows a remote attacker to perform SSRF attacks.
Shibboleth XMLTooling-C before 1.6.3, as used in Shibboleth Service Provider before 2.6.0 on Windows and other products, mishandles digital signatures of user attribute data, which allows remote attackers to obtain sensitive information or conduct impersonation attacks via a crafted DTD.
Adminer is an open-source database management in a single PHP file. In adminer from version 4.0.0 and before 4.7.9 there is a server-side request forgery vulnerability. Users of Adminer versions bundling all drivers (e.g. `adminer.php`) are affected. This is fixed in version 4.7.9.
XStream is a Java library to serialize objects to XML and back again. In XStream before version 1.4.16, there is a vulnerability where the processed stream at unmarshalling time contains type information to recreate the formerly written objects. XStream creates therefore new instances based on these type information. An attacker can manipulate the processed input stream and replace or inject objects, that result in a server-side forgery request. No user is affected, who followed the recommendation to setup XStream's security framework with a whitelist limited to the minimal required types. If you rely on XStream's default blacklist of the Security Framework, you will have to use at least version 1.4.16.
Debian ftpsync before 20171017 does not use the rsync --safe-links option, which allows remote attackers to conduct directory traversal attacks via a crafted upstream mirror.
An Access Bypass issue exists in OTRS Help Desk before 3.2.4, 3.1.14, and 3.0.19, OTRS ITSM before 3.2.3, 3.1.8, and 3.0.7, and FAQ before 2.2.3, 2.1.4, and 2.0.8. Access rights by the object linking mechanism is not verified
The (1) bundled GnuTLS SSL/TLS plugin and the (2) bundled OpenSSL SSL/TLS plugin in libpurple in Pidgin before 2.10.10 do not properly consider the Basic Constraints extension during verification of X.509 certificates from SSL servers, which allows man-in-the-middle attackers to spoof servers and obtain sensitive information via a crafted certificate.
Zend_XmlRpc in Zend Framework 1.x before 1.11.12 and 1.12.x before 1.12.0 does not properly handle SimpleXMLElement classes, which allows remote attackers to read arbitrary files or create TCP connections via an external entity reference in a DOCTYPE element in an XML-RPC request, aka an XML external entity (XXE) injection attack.
Mahara 1.4.x before 1.4.4 and 1.5.x before 1.5.3 allows remote attackers to read arbitrary files or create TCP connections via an XML external entity (XXE) injection attack, as demonstrated by reading config.php.
A weak randomness in WebCrypto keygen vulnerability exists in Node.js 18 due to a change with EntropySource() in SecretKeyGenTraits::DoKeyGen() in src/crypto/crypto_keygen.cc. There are two problems with this: 1) It does not check the return value, it assumes EntropySource() always succeeds, but it can (and sometimes will) fail. 2) The random data returned byEntropySource() may not be cryptographically strong and therefore not suitable as keying material.
In PHP versions 7.2.x below 7.2.34, 7.3.x below 7.3.23 and 7.4.x below 7.4.11, when AES-CCM mode is used with openssl_encrypt() function with 12 bytes IV, only first 7 bytes of the IV is actually used. This can lead to both decreased security and incorrect encryption data.
An SSRF issue was discovered in Asterisk through 19.x. When using STIR/SHAKEN, it's possible to send arbitrary requests (such as GET) to interfaces such as localhost by using the Identity header. This is fixed in 16.25.2, 18.11.2, and 19.3.2.
http.client in Python 3.x before 3.5.10, 3.6.x before 3.6.12, 3.7.x before 3.7.9, and 3.8.x before 3.8.5 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of HTTPConnection.request.
Keylime does not enforce that the agent registrar data is the same when the tenant uses it for validation of the EK and identity quote and the verifier for validating the integrity quote. This allows an attacker to use one AK, EK pair from a real TPM to pass EK validation and give the verifier an AK of a software TPM. A successful attack breaks the entire chain of trust because a not validated AK is used by the verifier. This issue is worse if the validation happens first and then the agent gets added to the verifier because the timing is easier and the verifier does not validate the regcount entry being equal to 1,
Coturn is free open source implementation of TURN and STUN Server. Coturn before version 4.5.2 by default does not allow peers to connect and relay packets to loopback addresses in the range of `127.x.x.x`. However, it was observed that when sending a `CONNECT` request with the `XOR-PEER-ADDRESS` value of `0.0.0.0`, a successful response was received and subsequently, `CONNECTIONBIND` also received a successful response. Coturn then is able to relay packets to the loopback interface. Additionally, when coturn is listening on IPv6, which is default, the loopback interface can also be reached by making use of either `[::1]` or `[::]` as the peer address. By using the address `0.0.0.0` as the peer address, a malicious user will be able to relay packets to the loopback interface, unless `--denied-peer-ip=0.0.0.0` (or similar) has been specified. Since the default configuration implies that loopback peers are not allowed, coturn administrators may choose to not set the `denied-peer-ip` setting. The issue patched in version 4.5.2. As a workaround the addresses in the address block `0.0.0.0/8`, `[::1]` and `[::]` should be denied by default unless `--allow-loopback-peers` has been specified.
Improper Authorization in GitHub repository cobbler/cobbler prior to 3.3.2.
In Minetest before 5.4.0, players can add or subtract items from a different player's inventory.
FreeRDP is a free implementation of the Remote Desktop Protocol (RDP). In versions prior to 2.7.0, NT LAN Manager (NTLM) authentication does not properly abort when someone provides and empty password value. This issue affects FreeRDP based RDP Server implementations. RDP clients are not affected. The vulnerability is patched in FreeRDP 2.7.0. There are currently no known workarounds.
An issue was discovered in gatt-database.c in BlueZ 5.61. A use-after-free can occur when a client disconnects during D-Bus processing of a WriteValue call.
In GNOME glib-networking through 2.64.2, the implementation of GTlsClientConnection skips hostname verification of the server's TLS certificate if the application fails to specify the expected server identity. This is in contrast to its intended documented behavior, to fail the certificate verification. Applications that fail to provide the server identity, including Balsa before 2.5.11 and 2.6.x before 2.6.1, accept a TLS certificate if the certificate is valid for any host.
Apache Batik 1.13 is vulnerable to server-side request forgery, caused by improper input validation by the NodePickerPanel. By using a specially-crafted argument, an attacker could exploit this vulnerability to cause the underlying server to make arbitrary GET requests.
In GLPI after version 0.83.3 and before version 9.4.6, the CSRF tokens are generated using an insecure algorithm. The implementation uses rand and uniqid and MD5 which does not provide secure values. This is fixed in version 9.4.6.
Authorization Bypass Through User-Controlled Key in GitHub repository emicklei/go-restful prior to v3.8.0.
urllib in Python 2.x through 2.7.16 supports the local_file: scheme, which makes it easier for remote attackers to bypass protection mechanisms that blacklist file: URIs, as demonstrated by triggering a urllib.urlopen('local_file:///etc/passwd') call.
URL Restriction Bypass in GitHub repository plantuml/plantuml prior to V1.2022.5. An attacker can abuse this to bypass URL restrictions that are imposed by the different security profiles and achieve server side request forgery (SSRF). This allows accessing restricted internal resources/servers or sending requests to third party servers.
Authorization Bypass Through User-Controlled Key in NPM urijs prior to 1.19.8.