A vulnerability has been identified in TIA Administrator (All versions < V3.0.6). The affected application improperly validates code signing certificates. This could allow an attacker to bypass the check and exceute arbitrary code during installations.
A vulnerability has been identified in Siveillance Control (All versions >= V2.8 < V3.1.1). The affected product does not properly check the list of access groups that are assigned to an individual user. This could enable a locally logged on user to gain write privileges for objects where they only have read privileges.
A vulnerability has been identified in SINEC Traffic Analyzer (6GK8822-1BG01-0BA0) (All versions < V1.2). The affected web server is allowing HTTP methods like PUT and Delete. This could allow an attacker to modify unauthorized files.
A vulnerability has been identified in SICAM GridEdge Essential ARM (All versions), SICAM GridEdge Essential Intel (All versions < V2.7.3), SICAM GridEdge Essential with GDS ARM (All versions), SICAM GridEdge Essential with GDS Intel (All versions < V2.7.3). Affected software uses an improperly protected file to import SSH keys. Attackers with access to the filesystem of the host on which SICAM GridEdge runs, are able to inject a custom SSH key to that file.
SQLite before 3.32.0 allows a virtual table to be renamed to the name of one of its shadow tables, related to alter.c and build.c.
A vulnerability has been identified in SIMATIC S7-400 CPU 412-1 DP V7 (All versions), SIMATIC S7-400 CPU 412-2 DP V7 (All versions), SIMATIC S7-400 CPU 414-2 DP V7 (All versions), SIMATIC S7-400 CPU 414-3 DP V7 (All versions), SIMATIC S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 414F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416-2 DP V7 (All versions), SIMATIC S7-400 CPU 416-3 DP V7 (All versions), SIMATIC S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416F-2 DP V7 (All versions), SIMATIC S7-400 CPU 416F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 417-4 DP V7 (All versions), SIMATIC S7-400 CPU 412-2 PN V7 (All versions < V7.0.3), SIMATIC S7-400 H V4.5 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 H V6 CPU family (incl. SIPLUS variants) (All versions < V6.0.9), SIMATIC S7-400 PN/DP V6 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-410 CPU family (incl. SIPLUS variants) (All versions < V8.2.1), SIPLUS S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 V7 (All versions), SIPLUS S7-400 CPU 417-4 V7 (All versions). Sending of specially crafted packets to port 102/tcp via Ethernet interface via PROFIBUS or Multi Point Interfaces (MPI) could cause a denial of service condition on affected devices. Flashing with a firmware image may be required to recover the CPU. Successful exploitation requires an attacker to have network access to port 102/tcp via Ethernet interface or to be able to send messages via PROFIBUS or Multi Point Interfaces (MPI) to the device. No user interaction is required. If no access protection is configured, no privileges are required to exploit the security vulnerability. The vulnerability could allow causing a denial of service condition of the core functionality of the CPU, compromising the availability of the system.
A vulnerability has been identified in Mendix SAML (Mendix 10.12 compatible) (All versions < V4.0.3), Mendix SAML (Mendix 10.21 compatible) (All versions < V4.1.2), Mendix SAML (Mendix 9.24 compatible) (All versions < V3.6.21). Affected versions of the module insufficiently enforce signature validation and binding checks. This could allow unauthenticated remote attackers to hijack an account in specific SSO configurations.
A vulnerability has been identified in QMS Automotive (All versions < V12.39). The QMS.Mobile module of the affected application uses weak outdated application signing mechanism. This could allow an attacker to tamper the application code.
STMicroelectronics STSAFE-J 1.1.4, J-SAFE3 1.2.5, and J-SIGN sometimes allow attackers to abuse signature verification. This is associated with the ECDSA signature algorithm on the Java Card J-SAFE3 and STSAFE-J platforms exposing a 3.0.4 Java Card API. It is exploitable for STSAFE-J in closed configuration and J-SIGN (when signature verification is activated) but not for J-SAFE3 EPASS BAC and EAC products. It might also impact other products based on the J-SAFE-3 Java Card platform.
Improper Verification of Cryptographic Signature vulnerability in Snow Software Inventory Agent on Unix allows File Manipulation through Snow Update Packages.This issue affects Inventory Agent: through 7.3.1.
Improper Verification of Cryptographic Signature vulnerability in Snow Software Inventory Agent on MacOS, Snow Software Inventory Agent on Windows, Snow Software Inventory Agent on Linux allows File Manipulation through Snow Update Packages.This issue affects Inventory Agent: through 6.12.0; Inventory Agent: through 6.14.5; Inventory Agent: through 6.7.2.
Cosign is a project under the sigstore organization which aims to make signatures invisible infrastructure. In versions prior to 1.12.0 a number of vulnerabilities have been found in cosign verify-blob, where Cosign would successfully verify an artifact when verification should have failed. First a cosign bundle can be crafted to successfully verify a blob even if the embedded rekorBundle does not reference the given signature. Second, when providing identity flags, the email and issuer of a certificate is not checked when verifying a Rekor bundle, and the GitHub Actions identity is never checked. Third, providing an invalid Rekor bundle without the experimental flag results in a successful verification. And fourth an invalid transparency log entry will result in immediate success for verification. Details and examples of these issues can be seen in the GHSA-8gw7-4j42-w388 advisory linked. Users are advised to upgrade to 1.12.0. There are no known workarounds for these issues.
<p>A spoofing vulnerability exists when Windows incorrectly validates file signatures. An attacker who successfully exploited this vulnerability could bypass security features and load improperly signed files.</p> <p>In an attack scenario, an attacker could bypass security features intended to prevent improperly signed files from being loaded.</p> <p>The update addresses the vulnerability by correcting how Windows validates file signatures.</p>
A spoofing vulnerability exists when Windows incorrectly validates file signatures. An attacker who successfully exploited this vulnerability could bypass security features and load improperly signed files. In an attack scenario, an attacker could bypass security features intended to prevent improperly signed files from being loaded. The update addresses the vulnerability by correcting how Windows validates file signatures.
sigstore-java is a sigstore java client for interacting with sigstore infrastructure. sigstore-java has insufficient verification for a situation where a validly-signed but "mismatched" bundle is presented as proof of inclusion into a transparency log. This bug impacts clients using any variation of KeylessVerifier.verify(). The verifier may accept a bundle with an unrelated log entry, cryptographically verifying everything but fails to ensure the log entry applies to the artifact in question, thereby "verifying" a bundle without any proof the signing event was logged. This allows the creation of a bundle without fulcio certificate and private key combined with an unrelated but time-correct log entry to fake logging of a signing event. A malicious actor using a compromised identity may want to do this to prevent discovery via rekor's log monitors. The signer's identity will still be available to the verifier. The signature on the bundle must still be on the correct artifact for the verifier to pass. sigstore-gradle-plugin and sigstore-maven-plugin are not affected by this as they only provide signing functionality. This issue has been patched in v1.1.0 release with PR #856. All users are advised to upgrade. There are no known workarounds for this vulnerability.
A vulnerability was reported in LenovoAppScenarioPluginSystem for Lenovo System Interface Foundation prior to version 1.2.184.31 that could allow unsigned DLL files to be executed.