An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. DMA attacks on the SdHostDriver buffer used by SMM and non-SMM code could cause TOCTOU race-condition issues that could lead to corruption of SMRAM and escalation of privileges. This attack can be mitigated by using IOMMU protection for the ACPI runtime memory used for the command buffer. This attack can be mitigated by copying the link data to SMRAM before checking it and verifying that all pointers are within the buffer.
DMA transactions which are targeted at input buffers used for the NvmExpressLegacy software SMI handler could cause SMRAM corruption through a TOCTOU attack. DMA transactions which are targeted at input buffers used for the software SMI handler used by the NvmExpressLegacy driver could cause SMRAM corruption through a TOCTOU attack. This issue was discovered by Insyde engineering based on the general description provided by Intel's iSTARE group. This issue was fixed in kernel 5.2: 05.27.25, kernel 5.3: 05.36.25, kernel 5.4: 05.44.25, kernel 5.5: 05.52.25 https://www.insyde.com/security-pledge/SA-2022053
An issue was discovered in Insyde InsydeH2O with kernel 5.1 through 5.5. DMA attacks on the SdMmcDevice buffer used by SMM and non-SMM code could cause TOCTOU race-condition issues that could lead to corruption of SMRAM and escalation of privileges. This attack can be mitigated by using IOMMU protection for the ACPI runtime memory used for the command buffer. This attack can be mitigated by copying the link data to SMRAM before checking it and verifying that all pointers are within the buffer.
DMA transactions which are targeted at input buffers used for the AhciBusDxe software SMI handler could cause SMRAM corruption (a TOCTOU attack). DMA transactions which are targeted at input buffers used for the software SMI handler used by the AhciBusDxe driver could cause SMRAM corruption through a TOCTOU attack. This issue was discovered by Insyde engineering based on the general description provided by Intel's iSTARE group, Fixed in kernel 5.2: 05.27.23, kernel 5.3: 05.36.23, kernel 5.4: 05.44.23, kernel 5.5: 05.52.23 https://www.insyde.com/security-pledge/SA-2022047
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. DMA attacks on the NvmExpressDxe buffer used by SMM and non-SMM code could cause TOCTOU race-condition issues that could lead to corruption of SMRAM and escalation of privileges. This attack can be mitigated by using IOMMU protection for the ACPI runtime memory used for the command buffer. This attack can be mitigated by copying the link data to SMRAM before checking it and verifying that all pointers are within the buffer.
DMA transactions which are targeted at input buffers used for the SdMmcDevice software SMI handler could cause SMRAM corruption through a TOCTOU attack. DMA transactions which are targeted at input buffers used for the software SMI handler used by the SdMmcDevice driver could cause SMRAM corruption through a TOCTOU attack. This issue was discovered by Insyde engineering based on the general description provided by Intel's iSTARE group. This was fixed in kernel 5.2: 05.27.25, kernel 5.3: 05.36.25, kernel 5.4: 05.44.25, kernel 5.5: 05.52.25 https://www.insyde.com/security-pledge/SA-2022054
DMA transactions which are targeted at input buffers used for the NvmExpressDxe software SMI handler could cause SMRAM corruption through a TOCTOU attack. DMA transactions which are targeted at input buffers used for the software SMI handler used by the NvmExpressDxe driver could cause SMRAM corruption through a TOCTOU attack. This issue was discovered by Insyde engineering based on the general description provided by Intel's iSTARE group. This issue was fixed in kernel 5.2: 05.27.25, kernel 5.3: 05.36.25, kernel 5.4: 05.44.25, kernel 5.5: 05.52.25 https://www.insyde.com/security-pledge/SA-2022055
DMA transactions which are targeted at input buffers used for the SdHostDriver software SMI handler could cause SMRAM corruption through a TOCTOU attack. DMA transactions which are targeted at input buffers used for the software SMI handler used by the SdHostDriver driver could cause SMRAM corruption through a TOCTOU attack. This issue was discovered by Insyde engineering based on the general description provided by Intel's iSTARE group. Fixed in kernel 5.2: 05.27.25, kernel 5.3: 05.36.25, kernel 5.4: 05.44.25, kernel 5.5: 05.52.25 https://www.insyde.com/security-pledge/SA-2022050
DMA transactions which are targeted at input buffers used for the HddPassword software SMI handler could cause SMRAM corruption through a TOCTOU attack. DMA transactions which are targeted at input buffers used for the software SMI handler used by the HddPassword driver could cause SMRAM corruption through a TOCTOU attack..This issue was discovered by Insyde engineering based on the general description provided by Intel's iSTARE group. Fixed in kernel Kernel 5.2: 05.27.23, Kernel 5.3: 05.36.23, Kernel 5.4: 05.44.23, Kernel 5.5: 05.52.23 https://www.insyde.com/security-pledge/SA-2022051
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. DMA attacks on the StorageSecurityCommandDxe shared buffer used by SMM and non-SMM code could cause TOCTOU race-condition issues that could lead to corruption of SMRAM and escalation of privileges. This attack can be mitigated using IOMMU protection for the ACPI runtime memory used for the command buffer. This attack can be mitigated by copying the firmware block services data to SMRAM before checking it.
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. DMA attacks on the PnpSmm shared buffer used by SMM and non-SMM code could cause TOCTOU race-condition issues that could lead to corruption of SMRAM and escalation of privileges. This attack can be mitigated using IOMMU protection for the ACPI runtime memory used for the command buffer. This attack can be mitigated by copying the firmware block services data to SMRAM before checking it.
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. DMA attacks on the FwBlockServiceSmm shared buffer used by SMM and non-SMM code could cause TOCTOU race-condition issues that could lead to corruption of SMRAM and escalation of privileges. This attack can be mitigated using IOMMU protection for the ACPI runtime memory used for the command buffer. This attack can be mitigated by copying the firmware block services data to SMRAM before checking it.
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. DMA attacks on the AhciBusDxe shared buffer used by SMM and non-SMM code could cause TOCTOU race-condition issues that could lead to corruption of SMRAM and escalation of privileges. This attack can be mitigated using IOMMU protection for the ACPI runtime memory used for the command buffer. This attack can be mitigated by copying the firmware block services data to SMRAM before checking it.
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. DMA attacks on the IdeBusDxe shared buffer used by SMM and non-SMM code could cause TOCTOU race-condition issues that could lead to corruption of SMRAM and escalation of privileges. This attack can be mitigated using IOMMU protection for the ACPI runtime memory used for the command buffer. This attack can be mitigated by copying the firmware block services data to SMRAM before checking it.
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. DMA attacks on the VariableRuntimeDxe shared buffer used by SMM and non-SMM code could cause TOCTOU race-condition issues that could lead to corruption of SMRAM and escalation of privileges. This issue was fixed in the kernel, which also protected chipset and OEM chipset code.
An issue was discovered in IhisiSmm in Insyde InsydeH2O with kernel 5.0 through 5.5. The IhisiDxe driver uses the command buffer to pass input and output data. By modifying the command buffer contents with DMA after the input parameters have been checked but before they are used, the IHISI SMM code may be convinced to modify SMRAM or OS, leading to possible data corruption or escalation of privileges.
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. DMA attacks on the HddPassword shared buffer used by SMM and non-SMM code could cause TOCTOU race-condition issues that could lead to corruption of SMRAM and escalation of privileges. This attack can be mitigated using IOMMU protection for the ACPI runtime memory used for the command buffer. This attack can be mitigated by copying the firmware block services data to SMRAM before checking it.
In UsbCoreDxe, tampering with the contents of the USB working buffer using DMA while certain USB transactions are in process leads to a TOCTOU problem that could be used by an attacker to cause SMRAM corruption and escalation of privileges The UsbCoreDxe module creates a working buffer for USB transactions outside of SMRAM. The code which uses can be inside of SMM, making the working buffer untrusted input. The buffer can be corrupted by DMA transfers. The SMM code code attempts to sanitize pointers to ensure all pointers refer to the working buffer, but when a pointer is not found in the list of pointers to sanitize, the current action is not aborted, leading to undefined behavior. This issue was discovered by Insyde engineering based on the general description provided by Intel's iSTARE group. Fixed in: Kernel 5.0: Version 05.09. 21 Kernel 5.1: Version 05.17.21 Kernel 5.2: Version 05.27.21 Kernel 5.3: Version 05.36.21 Kernel 5.4: Version 05.44.21 Kernel 5.5: Version 05.52.21 https://www.insyde.com/security-pledge/SA-2022063
DMA attacks on the parameter buffer used by the Int15ServiceSmm software SMI handler could lead to a TOCTOU attack on the SMI handler and lead to corruption of SMRAM. DMA attacks on the parameter buffer used by the software SMI handler used by the driver Int15ServiceSmm could lead to a TOCTOU attack on the SMI handler and lead to corruption of SMRAM. This issue was discovered by Insyde engineering during a security review. This issue is fixed in Kernel 5.2: 05.27.23, Kernel 5.3: 05.36.23, Kernel 5.4: 05.44.23 and Kernel 5.5: 05.52.23 CWE-367
DMA attacks on the parameter buffer used by the VariableRuntimeDxe software SMI handler could lead to a TOCTOU attack. DMA attacks on the parameter buffer used by the software SMI handler used by the driver VariableRuntimeDxe could lead to a TOCTOU attack on the SMI handler and lead to corruption of SMRAM. This issue was discovered by Insyde engineering during a security review. This issue is fixed in Kernel 5.4: 05.44.23 and Kernel 5.5: 05.52.23. CWE-367 CWE-367 Report at: https://www.insyde.com/security-pledge/SA-2022056
DMA transactions which are targeted at input buffers used for the FwBlockServiceSmm software SMI handler could cause SMRAM corruption through a TOCTOU attack. DMA transactions which are targeted at input buffers used for the software SMI handler used by the FwBlockServiceSmm driver could cause SMRAM corruption through a TOCTOU attack. This issue was discovered by Insyde engineering based on the general description provided by Intel's iSTARE group. Fixed in kernel 5.2: 05.27.23, 5.3: 05.36.23, 5.4: 05.44.23, 5.5: 05.52.23 https://www.insyde.com/security-pledge/SA-2022048
DMA transactions which are targeted at input buffers used for the StorageSecurityCommandDxe software SMI handler could cause SMRAM corruption through a TOCTOU attack. DMA transactions which are targeted at input buffers used for the software SMI handler used by the StorageSecurityCommandDxe driver could cause SMRAM corruption. This issue was discovered by Insyde engineering based on the general description provided by
DMA transactions which are targeted at input buffers used for the SmmResourceCheckDxe software SMI handler cause SMRAM corruption (a TOCTOU attack) DMA transactions which are targeted at input buffers used for the software SMI handler used by the SmmResourceCheckDxe driver could cause SMRAM corruption through a TOCTOU attack... This issue was discovered by Insyde engineering. Fixed in kernel Kernel 5.2: 05.27.23. Kernel 5.3: 05.36.23. Kernel 5.4: 05.44.23. Kernel 5.5: 05.52.23 https://www.insyde.com/security-pledge/SA-2022046
Update description and links DMA transactions which are targeted at input buffers used for the software SMI handler used by the FvbServicesRuntimeDxe driver could cause SMRAM corruption through a TOCTOU attack.. "DMA transactions which are targeted at input buffers used for the software SMI handler used by the FvbServicesRuntimeDxe driver could cause SMRAM corruption. This issue was discovered by Insyde engineering based on the general description provided by Intel's iSTARE group. Fixed in Kernel 5.2: 05.27.21. Kernel 5.3: 05.36.21. Kernel 5.4: 05.44.21. Kernel 5.5: 05.52.21 https://www.insyde.com/security-pledge/SA-2022044
DMA attacks on the parameter buffer used by the PnpSmm driver could change the contents after parameter values have been checked but before they are used (a TOCTOU attack) DMA attacks on the parameter buffer used by the PnpSmm driver could change the contents after parameter values have been checked but before they are used (a TOCTOU attack) . This issue was discovered by Insyde engineering during a security review. This iss was fixed in Kernel 5.2: 05.27.29, Kernel 5.3: 05.36.25, Kernel 5.4: 05.44.25, Kernel 5.5: 05.52.25. CWE-367 https://www.insyde.com/security-pledge/SA-2022043
DMA attacks on the parameter buffer used by the IhisiSmm driver could change the contents after parameter values have been checked but before they are used (a TOCTOU attack). DMA attacks on the parameter buffer used by the IhisiSmm driver could change the contents after parameter values have been checked but before they are used (a TOCTOU attack). This issue was discovered by Insyde engineering. This issue is fixed in Kernel 5.4: 05.44.23 and Kernel 5.5: 05.52.23. CWE-367
TOCTOU race-condition vulnerability in Insyde InsydeH2O with Kernel 5.2 before version 05.27.29, Kernel 5.3 before version 05.36.29, Kernel 5.4 version before 05.44.13, and Kernel 5.5 before version 05.52.13 allows an attacker to alter data and code used by the remainder of the boot process.
DMA transactions which are targeted at input buffers used for the software SMI handler used by the IdeBusDxe driver could cause SMRAM corruption through a TOCTOU attack... DMA transactions which are targeted at input buffers used for the software SMI handler used by the IdeBusDxe driver could cause SMRAM corruption through a TOCTOU attack. This issue was discovered by Insyde engineering based on the general description provided by Intel's iSTARE group. Fixed in kernel 5.2: 05.27.25, kernel 5.3: 05.36.25, kernel 5.4: 05.44.25 https://www.insyde.com/security-pledge/SA-2022049
A time-of-check to time-of-use issue exists in io_uring subsystem's IORING_OP_CLOSE operation in the Linux kernel's versions 5.6 - 5.11 (inclusive), which allows a local user to elevate their privileges to root. Introduced in b5dba59e0cf7e2cc4d3b3b1ac5fe81ddf21959eb, patched in 9eac1904d3364254d622bf2c771c4f85cd435fc2, backported to stable in 788d0824269bef539fe31a785b1517882eafed93.
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Ancillary Function Driver for WinSock allows an authorized attacker to elevate privileges locally.
A time-of-check time-of-use vulnerability in PulseSecureService.exe in Pulse Secure Client versions prior to 9.1.6 down to 5.3 R70 for Windows (which runs as NT AUTHORITY/SYSTEM) allows unprivileged users to run a Microsoft Installer executable with elevated privileges.
Time-of-check time-of-use (toctou) race condition in Windows Subsystem for Linux allows an authorized attacker to elevate privileges locally.
A vulnerability in Cisco IOS XR Software image verification checks could allow an authenticated, local attacker to execute arbitrary code on the underlying operating system. This vulnerability is due to a time-of-check, time-of-use (TOCTOU) race condition when an install query regarding an ISO image is performed during an install operation that uses an ISO image. An attacker could exploit this vulnerability by modifying an ISO image and then carrying out install requests in parallel. A successful exploit could allow the attacker to execute arbitrary code on an affected device.
In the Linux kernel, the following vulnerability has been resolved: crypto: qat - resolve race condition during AER recovery During the PCI AER system's error recovery process, the kernel driver may encounter a race condition with freeing the reset_data structure's memory. If the device restart will take more than 10 seconds the function scheduling that restart will exit due to a timeout, and the reset_data structure will be freed. However, this data structure is used for completion notification after the restart is completed, which leads to a UAF bug. This results in a KFENCE bug notice. BUG: KFENCE: use-after-free read in adf_device_reset_worker+0x38/0xa0 [intel_qat] Use-after-free read at 0x00000000bc56fddf (in kfence-#142): adf_device_reset_worker+0x38/0xa0 [intel_qat] process_one_work+0x173/0x340 To resolve this race condition, the memory associated to the container of the work_struct is freed on the worker if the timeout expired, otherwise on the function that schedules the worker. The timeout detection can be done by checking if the caller is still waiting for completion or not by using completion_done() function.
Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called.
Windows Print Spooler Elevation of Privilege Vulnerability
Windows Kernel Elevation of Privilege Vulnerability
A vulnerability in the shared library loading mechanism of Cisco AnyConnect Secure Mobility Client for Linux and Mac OS could allow an authenticated, local attacker to perform a shared library hijacking attack on an affected device if the VPN Posture (HostScan) Module is installed on the AnyConnect client. This vulnerability is due to a race condition in the signature verification process for shared library files that are loaded on an affected device. An attacker could exploit this vulnerability by sending a series of crafted interprocess communication (IPC) messages to the AnyConnect process. A successful exploit could allow the attacker to execute arbitrary code on the affected device with root privileges. To exploit this vulnerability, the attacker must have a valid account on the system.
snowflake-connector-nodejs is a NodeJS driver for Snowflake. Versions starting from 1.10.0 to before 2.0.4, are vulnerable to a Time-of-Check to Time-of-Use (TOCTOU) race condition. When using the Easy Logging feature on Linux and macOS the Driver reads logging configuration from a user-provided file. On Linux and macOS the Driver verifies that the configuration file can be written to only by its owner. That check was vulnerable to a TOCTOU race condition and failed to verify that the file owner matches the user running the Driver. This could allow a local attacker with write access to the configuration file or the directory containing it to overwrite the configuration and gain control over logging level and output location. This issue has been patched in version 2.0.4.
A time-of-check to time-of-use (TOCTOU) bug in handling of IOCTL (input/output control) requests. This TOCTOU bug leads to an out-of-bounds write vulnerability which can be further exploited, allowing an attacker to gain full local privilege escalation on the system.This issue affects Avast/Avg Antivirus: 23.8.
gosnowflake is the Snowflake Golang driver. Versions starting from 1.7.0 to before 1.13.3, are vulnerable to a Time-of-Check to Time-of-Use (TOCTOU) race condition. When using the Easy Logging feature on Linux and macOS, the Driver reads logging configuration from a user-provided file. On Linux and macOS the Driver verifies that the configuration file can be written to only by its owner. That check was vulnerable to a TOCTOU race condition and failed to verify that the file owner matches the user running the Driver. This could allow a local attacker with write access to the configuration file or the directory containing it to overwrite the configuration and gain control over logging level and output location. This issue has been patched in version 1.13.3.
snowflake-connector-net is the Snowflake Connector for .NET. Versions starting from 2.1.2 to before 4.4.1, are vulnerable to a Time-of-Check to Time-of-Use (TOCTOU) race condition. When using the Easy Logging feature on Linux and macOS, the Connector reads logging configuration from a user-provided file. On Linux and macOS, the Connector verifies that the configuration file can be written to only by its owner. That check was vulnerable to a TOCTOU race condition and failed to verify that the file owner matches the user running the Connector. This could allow a local attacker with write access to the configuration file or the directory containing it to overwrite the configuration and gain control over logging level and output location. This issue has been patched in version 4.4.1.
Time-of-check Time-of-use (TOCTOU) Race Condition vulnerability in openEuler iSulad on Linux allows Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions. This vulnerability is associated with program files https://gitee.Com/openeuler/iSulad/blob/master/src/cmd/isulad/main.C. This issue affects iSulad: 2.0.18-13, from 2.1.4-1 through 2.1.4-2.
A race condition in GitHub Enterprise Server was identified that could allow an attacker administrator access. To exploit this, an organization needs to be converted from a user. This vulnerability affected all versions of GitHub Enterprise Server since 3.7 and was fixed in version 3.7.19, 3.8.12, 3.9.7, 3.10.4, and 3.11.1.
The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.1, watchOS 9.2, iOS 16.2 and iPadOS 16.2, tvOS 16.2. An attacker with arbitrary read and write capability may be able to bypass Pointer Authentication. Apple is aware of a report that this issue may have been exploited against versions of iOS released before iOS 15.7.1.
Firejail before 0.9.64.4 allows attackers to bypass intended access restrictions because there is a TOCTOU race condition between a stat operation and an OverlayFS mount operation.
Memory corruption while processing simultaneous requests via escape path.
Microsoft AutoUpdate (MAU) Elevation of Privilege Vulnerability
By exploiting a time of check to time of use (TOCTOU) race condition during the Endpoint Security for Linux Threat Prevention and Firewall (ENSL TP/FW) installation process, a local user can perform a privilege escalation attack to obtain administrator privileges for the purpose of executing arbitrary code through insecure use of predictable temporary file locations.
NVIDIA .run Installer for Linux and Solaris contains a vulnerability where an attacker could use a race condition to escalate privileges. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, denial of service, or data tampering.