A vulnerability classified as problematic was found in Linux Kernel. This vulnerability affects the function macvlan_handle_frame of the file drivers/net/macvlan.c of the component skb. The manipulation leads to memory leak. The attack can be initiated remotely. It is recommended to apply a patch to fix this issue. The identifier of this vulnerability is VDB-211024.
In the Linux kernel, the following vulnerability has been resolved: iommu/amd: Clear DMA ops when switching domain Since commit 08a27c1c3ecf ("iommu: Add support to change default domain of an iommu group") a user can switch a device between IOMMU and direct DMA through sysfs. This doesn't work for AMD IOMMU at the moment because dev->dma_ops is not cleared when switching from a DMA to an identity IOMMU domain. The DMA layer thus attempts to use the dma-iommu ops on an identity domain, causing an oops: # echo 0000:00:05.0 > /sys/sys/bus/pci/drivers/e1000e/unbind # echo identity > /sys/bus/pci/devices/0000:00:05.0/iommu_group/type # echo 0000:00:05.0 > /sys/sys/bus/pci/drivers/e1000e/bind ... BUG: kernel NULL pointer dereference, address: 0000000000000028 ... Call Trace: iommu_dma_alloc e1000e_setup_tx_resources e1000e_open Since iommu_change_dev_def_domain() calls probe_finalize() again, clear the dma_ops there like Vt-d does.
In the Linux kernel, the following vulnerability has been resolved: hwmon: (w83793) Fix NULL pointer dereference by removing unnecessary structure field If driver read tmp value sufficient for (tmp & 0x08) && (!(tmp & 0x80)) && ((tmp & 0x7) == ((tmp >> 4) & 0x7)) from device then Null pointer dereference occurs. (It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers) Also lm75[] does not serve a purpose anymore after switching to devm_i2c_new_dummy_device() in w83791d_detect_subclients(). The patch fixes possible NULL pointer dereference by removing lm75[]. Found by Linux Driver Verification project (linuxtesting.org). [groeck: Dropped unnecessary continuation lines, fixed multi-line alignments]
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix memory leak in nvmet_alloc_ctrl() When creating ctrl in nvmet_alloc_ctrl(), if the cntlid_min is larger than cntlid_max of the subsystem, and jumps to the "out_free_changed_ns_list" label, but the ctrl->sqs lack of be freed. Fix this by jumping to the "out_free_sqs" label.
Vulnerability in the Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: ImageIO). Supported versions that are affected are Java SE: 7u311, 8u301, 11.0.12, 17; Oracle GraalVM Enterprise Edition: 20.3.3 and 21.2.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Swing). Supported versions that are affected are Java SE: 7u311, 8u301, 11.0.12, 17; Oracle GraalVM Enterprise Edition: 20.3.3 and 21.2.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Utility). Supported versions that are affected are Java SE: 7u311, 8u301, 11.0.12, 17; Oracle GraalVM Enterprise Edition: 20.3.3 and 21.2.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Swing). Supported versions that are affected are Java SE: 7u311, 8u301, 11.0.12, 17; Oracle GraalVM Enterprise Edition: 20.3.3 and 21.2.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: JSSE). Supported versions that are affected are Java SE: 7u311, 8u301, 11.0.12; Oracle GraalVM Enterprise Edition: 20.3.3 and 21.2.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via TLS to compromise Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS 3.1 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
In the Linux kernel, the following vulnerability has been resolved: speakup: Fix sizeof() vs ARRAY_SIZE() bug The "buf" pointer is an array of u16 values. This code should be using ARRAY_SIZE() (which is 256) instead of sizeof() (which is 512), otherwise it can the still got out of bounds.
In the Linux kernel, the following vulnerability has been resolved: ALSA: timer: Set lower bound of start tick time Currently ALSA timer doesn't have the lower limit of the start tick time, and it allows a very small size, e.g. 1 tick with 1ns resolution for hrtimer. Such a situation may lead to an unexpected RCU stall, where the callback repeatedly queuing the expire update, as reported by fuzzer. This patch introduces a sanity check of the timer start tick time, so that the system returns an error when a too small start size is set. As of this patch, the lower limit is hard-coded to 100us, which is small enough but can still work somehow.
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential hang in nilfs_detach_log_writer() Syzbot has reported a potential hang in nilfs_detach_log_writer() called during nilfs2 unmount. Analysis revealed that this is because nilfs_segctor_sync(), which synchronizes with the log writer thread, can be called after nilfs_segctor_destroy() terminates that thread, as shown in the call trace below: nilfs_detach_log_writer nilfs_segctor_destroy nilfs_segctor_kill_thread --> Shut down log writer thread flush_work nilfs_iput_work_func nilfs_dispose_list iput nilfs_evict_inode nilfs_transaction_commit nilfs_construct_segment (if inode needs sync) nilfs_segctor_sync --> Attempt to synchronize with log writer thread *** DEADLOCK *** Fix this issue by changing nilfs_segctor_sync() so that the log writer thread returns normally without synchronizing after it terminates, and by forcing tasks that are already waiting to complete once after the thread terminates. The skipped inode metadata flushout will then be processed together in the subsequent cleanup work in nilfs_segctor_destroy().
There's a flaw in OpenEXR in versions before 3.0.0-beta. A crafted input file that is processed by OpenEXR could cause a shift overflow in the FastHufDecoder, potentially leading to problems with application availability.
An issue was discovered in Prosody before 0.11.9. The proxy65 component allows open access by default, even if neither of the users has an XMPP account on the local server, allowing unrestricted use of the server's bandwidth.
mod_auth_openidc is an authentication/authorization module for the Apache 2.x HTTP server that functions as an OpenID Connect Relying Party, authenticating users against an OpenID Connect Provider. When mod_auth_openidc versions prior to 2.4.9 are configured to use an unencrypted Redis cache (`OIDCCacheEncrypt off`, `OIDCSessionType server-cache`, `OIDCCacheType redis`), `mod_auth_openidc` wrongly performed argument interpolation before passing Redis requests to `hiredis`, which would perform it again and lead to an uncontrolled format string bug. Initial assessment shows that this bug does not appear to allow gaining arbitrary code execution, but can reliably provoke a denial of service by repeatedly crashing the Apache workers. This bug has been corrected in version 2.4.9 by performing argument interpolation only once, using the `hiredis` API. As a workaround, this vulnerability can be mitigated by setting `OIDCCacheEncrypt` to `on`, as cache keys are cryptographically hashed before use when this option is enabled.
In the Linux kernel, the following vulnerability has been resolved: icmp: prevent possible NULL dereferences from icmp_build_probe() First problem is a double call to __in_dev_get_rcu(), because the second one could return NULL. if (__in_dev_get_rcu(dev) && __in_dev_get_rcu(dev)->ifa_list) Second problem is a read from dev->ip6_ptr with no NULL check: if (!list_empty(&rcu_dereference(dev->ip6_ptr)->addr_list)) Use the correct RCU API to fix these. v2: add missing include <net/addrconf.h>
In the Linux kernel, the following vulnerability has been resolved: vt: fix unicode buffer corruption when deleting characters This is the same issue that was fixed for the VGA text buffer in commit 39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the buffer"). The cure is also the same i.e. replace memcpy() with memmove() due to the overlaping buffers.
dcmdata in DCMTK before 3.6.9 has a segmentation fault via an invalid DIMSE message.
dirmngr before 2.1.0 improperly handles certain system calls, which allows remote attackers to cause a denial of service (DOS) via a specially-crafted certificate.
In BIND 9.3.0 -> 9.11.35, 9.12.0 -> 9.16.21, and versions 9.9.3-S1 -> 9.11.35-S1 and 9.16.8-S1 -> 9.16.21-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.18 of the BIND 9.17 development branch, exploitation of broken authoritative servers using a flaw in response processing can cause degradation in BIND resolver performance. The way the lame cache is currently designed makes it possible for its internal data structures to grow almost infinitely, which may cause significant delays in client query processing.
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Stop parsing channels bits when all channels are found. If a usb audio device sets more bits than the amount of channels it could write outside of the map array.
In the Linux kernel, the following vulnerability has been resolved: md: Don't suspend the array for interrupted reshape md_start_sync() will suspend the array if there are spares that can be added or removed from conf, however, if reshape is still in progress, this won't happen at all or data will be corrupted(remove_and_add_spares won't be called from md_choose_sync_action for reshape), hence there is no need to suspend the array if reshape is not done yet. Meanwhile, there is a potential deadlock for raid456: 1) reshape is interrupted; 2) set one of the disk WantReplacement, and add a new disk to the array, however, recovery won't start until the reshape is finished; 3) then issue an IO across reshpae position, this IO will wait for reshape to make progress; 4) continue to reshape, then md_start_sync() found there is a spare disk that can be added to conf, mddev_suspend() is called; Step 4 and step 3 is waiting for each other, deadlock triggered. Noted this problem is found by code review, and it's not reporduced yet. Fix this porblem by don't suspend the array for interrupted reshape, this is safe because conf won't be changed until reshape is done.
In the Linux kernel, the following vulnerability has been resolved: net: ip_tunnel: prevent perpetual headroom growth syzkaller triggered following kasan splat: BUG: KASAN: use-after-free in __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170 Read of size 1 at addr ffff88812fb4000e by task syz-executor183/5191 [..] kasan_report+0xda/0x110 mm/kasan/report.c:588 __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170 skb_flow_dissect_flow_keys include/linux/skbuff.h:1514 [inline] ___skb_get_hash net/core/flow_dissector.c:1791 [inline] __skb_get_hash+0xc7/0x540 net/core/flow_dissector.c:1856 skb_get_hash include/linux/skbuff.h:1556 [inline] ip_tunnel_xmit+0x1855/0x33c0 net/ipv4/ip_tunnel.c:748 ipip_tunnel_xmit+0x3cc/0x4e0 net/ipv4/ipip.c:308 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564 __dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] neigh_connected_output+0x42c/0x5d0 net/core/neighbour.c:1592 ... ip_finish_output2+0x833/0x2550 net/ipv4/ip_output.c:235 ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323 .. iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82 ip_tunnel_xmit+0x1dbc/0x33c0 net/ipv4/ip_tunnel.c:831 ipgre_xmit+0x4a1/0x980 net/ipv4/ip_gre.c:665 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564 ... The splat occurs because skb->data points past skb->head allocated area. This is because neigh layer does: __skb_pull(skb, skb_network_offset(skb)); ... but skb_network_offset() returns a negative offset and __skb_pull() arg is unsigned. IOW, we skb->data gets "adjusted" by a huge value. The negative value is returned because skb->head and skb->data distance is more than 64k and skb->network_header (u16) has wrapped around. The bug is in the ip_tunnel infrastructure, which can cause dev->needed_headroom to increment ad infinitum. The syzkaller reproducer consists of packets getting routed via a gre tunnel, and route of gre encapsulated packets pointing at another (ipip) tunnel. The ipip encapsulation finds gre0 as next output device. This results in the following pattern: 1). First packet is to be sent out via gre0. Route lookup found an output device, ipip0. 2). ip_tunnel_xmit for gre0 bumps gre0->needed_headroom based on the future output device, rt.dev->needed_headroom (ipip0). 3). ip output / start_xmit moves skb on to ipip0. which runs the same code path again (xmit recursion). 4). Routing step for the post-gre0-encap packet finds gre0 as output device to use for ipip0 encapsulated packet. tunl0->needed_headroom is then incremented based on the (already bumped) gre0 device headroom. This repeats for every future packet: gre0->needed_headroom gets inflated because previous packets' ipip0 step incremented rt->dev (gre0) headroom, and ipip0 incremented because gre0 needed_headroom was increased. For each subsequent packet, gre/ipip0->needed_headroom grows until post-expand-head reallocations result in a skb->head/data distance of more than 64k. Once that happens, skb->network_header (u16) wraps around when pskb_expand_head tries to make sure that skb_network_offset() is unchanged after the headroom expansion/reallocation. After this skb_network_offset(skb) returns a different (and negative) result post headroom expansion. The next trip to neigh layer (or anything else that would __skb_pull the network header) makes skb->data point to a memory location outside skb->head area. v2: Cap the needed_headroom update to an arbitarily chosen upperlimit to prevent perpetual increase instead of dropping the headroom increment completely.
Rack is a modular Ruby web server interface. Carefully crafted headers can cause header parsing in Rack to take longer than expected resulting in a possible denial of service issue. Accept and Forwarded headers are impacted. Ruby 3.2 has mitigations for this problem, so Rack applications using Ruby 3.2 or newer are unaffected. This vulnerability is fixed in 2.0.9.4, 2.1.4.4, 2.2.8.1, and 3.0.9.1.
Rack is a modular Ruby web server interface. Carefully crafted content type headers can cause Rack’s media type parser to take much longer than expected, leading to a possible denial of service vulnerability (ReDos 2nd degree polynomial). This vulnerability is patched in 3.0.9.1 and 2.2.8.1.
Transmission before 1.92 allows attackers to prevent download of a file by corrupted data during the endgame.
A flaw was found in OpenEXR in versions before 3.0.0-beta. A crafted input file supplied by an attacker, that is processed by the Dwa decompression functionality of OpenEXR's IlmImf library, could cause a NULL pointer dereference. The highest threat from this vulnerability is to system availability.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: JAX-WS). Supported versions that are affected are Java SE: 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Networking). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144; JRockit: R28.3.15. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144; JRockit: R28.3.15. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, JRockit. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Utilities). Supported versions that are affected are Java SE: 7u221, 8u212, 11.0.3 and 12.0.1; Java SE Embedded: 8u211. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Utilities). Supported versions that are affected are Java SE: 7u221, 8u212, 11.0.3 and 12.0.1; Java SE Embedded: 8u211. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: JAXP). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
In Puma before versions 3.12.2 and 4.3.1, a poorly-behaved client could use keepalive requests to monopolize Puma's reactor and create a denial of service attack. If more keepalive connections to Puma are opened than there are threads available, additional connections will wait permanently if the attacker sends requests frequently enough. This vulnerability is patched in Puma 4.3.1 and 3.12.2.
FreeRDP is a free implementation of the Remote Desktop Protocol (RDP), released under the Apache license. Affected versions are subject to an Integer-Underflow leading to Out-Of-Bound Read in the `zgfx_decompress_segment` function. In the context of `CopyMemory`, it's possible to read data beyond the transmitted packet range and likely cause a crash. This issue has been addressed in versions 2.11.0 and 3.0.0-beta3. Users are advised to upgrade. There are no known workarounds for this issue.
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
FreeRDP is a free implementation of the Remote Desktop Protocol (RDP), released under the Apache license. Affected versions are subject to an Out-Of-Bounds Read in the `general_LumaToYUV444` function. This Out-Of-Bounds Read occurs because processing is done on the `in` variable without checking if it contains data of sufficient length. Insufficient data for the `in` variable may cause errors or crashes. This issue has been addressed in versions 2.11.0 and 3.0.0-beta3. Users are advised to upgrade. There are no known workarounds for this issue.
FreeRDP is a free implementation of the Remote Desktop Protocol (RDP), released under the Apache license. Affected versions of FreeRDP are subject to a Null Pointer Dereference leading a crash in the RemoteFX (rfx) handling. Inside the `rfx_process_message_tileset` function, the program allocates tiles using `rfx_allocate_tiles` for the number of numTiles. If the initialization process of tiles is not completed for various reasons, tiles will have a NULL pointer. Which may be accessed in further processing and would cause a program crash. This issue has been addressed in versions 2.11.0 and 3.0.0-beta3. Users are advised to upgrade. There are no known workarounds for this vulnerability.
FreeRDP is a free implementation of the Remote Desktop Protocol (RDP), released under the Apache license. Affected versions are subject to a missing offset validation leading to Out Of Bound Read. In the `libfreerdp/codec/rfx.c` file there is no offset validation in `tile->quantIdxY`, `tile->quantIdxCb`, and `tile->quantIdxCr`. As a result crafted input can lead to an out of bounds read access which in turn will cause a crash. This issue has been addressed in versions 2.11.0 and 3.0.0-beta3. Users are advised to upgrade. There are no known workarounds for this vulnerability.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: 2D). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/fence: Fix oops due to non-matching drm_sched init/fini Currently amdgpu calls drm_sched_fini() from the fence driver sw fini routine - such function is expected to be called only after the respective init function - drm_sched_init() - was executed successfully. Happens that we faced a driver probe failure in the Steam Deck recently, and the function drm_sched_fini() was called even without its counter-part had been previously called, causing the following oops: amdgpu: probe of 0000:04:00.0 failed with error -110 BUG: kernel NULL pointer dereference, address: 0000000000000090 PGD 0 P4D 0 Oops: 0002 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 609 Comm: systemd-udevd Not tainted 6.2.0-rc3-gpiccoli #338 Hardware name: Valve Jupiter/Jupiter, BIOS F7A0113 11/04/2022 RIP: 0010:drm_sched_fini+0x84/0xa0 [gpu_sched] [...] Call Trace: <TASK> amdgpu_fence_driver_sw_fini+0xc8/0xd0 [amdgpu] amdgpu_device_fini_sw+0x2b/0x3b0 [amdgpu] amdgpu_driver_release_kms+0x16/0x30 [amdgpu] devm_drm_dev_init_release+0x49/0x70 [...] To prevent that, check if the drm_sched was properly initialized for a given ring before calling its fini counter-part. Notice ideally we'd use sched.ready for that; such field is set as the latest thing on drm_sched_init(). But amdgpu seems to "override" the meaning of such field - in the above oops for example, it was a GFX ring causing the crash, and the sched.ready field was set to true in the ring init routine, regardless of the state of the DRM scheduler. Hence, we ended-up using sched.ops as per Christian's suggestion [0], and also removed the no_scheduler check [1]. [0] https://lore.kernel.org/amd-gfx/984ee981-2906-0eaf-ccec-9f80975cb136@amd.com/ [1] https://lore.kernel.org/amd-gfx/cd0e2994-f85f-d837-609f-7056d5fb7231@amd.com/
A ReDoS issue was discovered in the URI component through 0.12.0 in Ruby through 3.2.1. The URI parser mishandles invalid URLs that have specific characters. It causes an increase in execution time for parsing strings to URI objects. The fixed versions are 0.12.1, 0.11.1, 0.10.2 and 0.10.0.1.
A ReDoS issue was discovered in the Time component through 0.2.1 in Ruby through 3.2.1. The Time parser mishandles invalid URLs that have specific characters. It causes an increase in execution time for parsing strings to Time objects. The fixed versions are 0.1.1 and 0.2.2.
In the Linux kernel, the following vulnerability has been resolved: sysv: don't call sb_bread() with pointers_lock held syzbot is reporting sleep in atomic context in SysV filesystem [1], for sb_bread() is called with rw_spinlock held. A "write_lock(&pointers_lock) => read_lock(&pointers_lock) deadlock" bug and a "sb_bread() with write_lock(&pointers_lock)" bug were introduced by "Replace BKL for chain locking with sysvfs-private rwlock" in Linux 2.5.12. Then, "[PATCH] err1-40: sysvfs locking fix" in Linux 2.6.8 fixed the former bug by moving pointers_lock lock to the callers, but instead introduced a "sb_bread() with read_lock(&pointers_lock)" bug (which made this problem easier to hit). Al Viro suggested that why not to do like get_branch()/get_block()/ find_shared() in Minix filesystem does. And doing like that is almost a revert of "[PATCH] err1-40: sysvfs locking fix" except that get_branch() from with find_shared() is called without write_lock(&pointers_lock).
In the Linux kernel, the following vulnerability has been resolved: of: module: prevent NULL pointer dereference in vsnprintf() In of_modalias(), we can get passed the str and len parameters which would cause a kernel oops in vsnprintf() since it only allows passing a NULL ptr when the length is also 0. Also, we need to filter out the negative values of the len parameter as these will result in a really huge buffer since snprintf() takes size_t parameter while ours is ssize_t... Found by Linux Verification Center (linuxtesting.org) with the Svace static analysis tool.
The Spectrum Scale 4.2.0.0 through 4.2.3.21 and 5.0.0.0 through 5.0.4.3 file system component is affected by a denial of service security vulnerability. An attacker can force the Spectrum Scale mmfsd/mmsdrserv daemons to unexpectedly exit, impacting the functionality of the Spectrum Scale cluster and the availability of file systems managed by Spectrum Scale. IBM X-Force ID: 179987.
In the Linux kernel, the following vulnerability has been resolved: mm: cachestat: fix two shmem bugs When cachestat on shmem races with swapping and invalidation, there are two possible bugs: 1) A swapin error can have resulted in a poisoned swap entry in the shmem inode's xarray. Calling get_shadow_from_swap_cache() on it will result in an out-of-bounds access to swapper_spaces[]. Validate the entry with non_swap_entry() before going further. 2) When we find a valid swap entry in the shmem's inode, the shadow entry in the swapcache might not exist yet: swap IO is still in progress and we're before __remove_mapping; swapin, invalidation, or swapoff have removed the shadow from swapcache after we saw the shmem swap entry. This will send a NULL to workingset_test_recent(). The latter purely operates on pointer bits, so it won't crash - node 0, memcg ID 0, eviction timestamp 0, etc. are all valid inputs - but it's a bogus test. In theory that could result in a false "recently evicted" count. Such a false positive wouldn't be the end of the world. But for code clarity and (future) robustness, be explicit about this case. Bail on get_shadow_from_swap_cache() returning NULL.