Qt 5.x before 5.15.6 and 6.x through 6.1.2 has an out-of-bounds write in QOutlineMapper::convertPath (called from QRasterPaintEngine::fill and QPaintEngineEx::stroke).
A flaw was found in the vhost library in DPDK. Function vhost_user_set_inflight_fd() does not validate `msg->payload.inflight.num_queues`, possibly causing out-of-bounds memory read/write. Any software using DPDK vhost library may crash as a result of this vulnerability.
A flaw was found in Samba's libldb. Multiple, consecutive leading spaces in an LDAP attribute can lead to an out-of-bounds memory write, leading to a crash of the LDAP server process handling the request. The highest threat from this vulnerability is to system availability.
BIRD Internet Routing Daemon 1.6.x through 1.6.7 and 2.x through 2.0.5 has a stack-based buffer overflow. The BGP daemon's support for RFC 8203 administrative shutdown communication messages included an incorrect logical expression when checking the validity of an input message. Sending a shutdown communication with a sufficient message length causes a four-byte overflow to occur while processing the message, where two of the overflow bytes are attacker-controlled and two are fixed.
Crash in the OPUS protocol dissector in Wireshark 3.6.0 to 3.6.8 allows denial of service via packet injection or crafted capture file
In Wireshark 2.4.0 to 2.4.13, 2.6.0 to 2.6.7, and 3.0.0, the DOF dissector could crash. This was addressed in epan/dissectors/packet-dof.c by properly handling generated IID and OID bytes.
An issue in the component luaG_runerror of Lua v5.4.4 and below leads to a heap-buffer overflow when a recursive error occurs.
curl 7.21.0 to and including 7.73.0 is vulnerable to uncontrolled recursion due to a stack overflow issue in FTP wildcard match parsing.
zlib before 1.2.12 allows memory corruption when deflating (i.e., when compressing) if the input has many distant matches.
OpenJPEG through 2.3.1 has a heap-based buffer overflow in opj_t1_clbl_decode_processor in openjp2/t1.c because of lack of opj_j2k_update_image_dimensions validation.
In GNOME Epiphany before 41.4 and 42.x before 42.2, an HTML document can trigger a client buffer overflow (in ephy_string_shorten in the UI process) via a long page title. The issue occurs because the number of bytes for a UTF-8 ellipsis character is not properly considered.
jackson-databind before 2.13.0 allows a Java StackOverflow exception and denial of service via a large depth of nested objects.
Xpdf 4.02 allows stack consumption because of an incorrect subroutine reference in a Type 1C font charstring, related to the FoFiType1C::getOp() function.
sysdeps/i386/ldbl2mpn.c in the GNU C Library (aka glibc or libc6) before 2.23 on x86 targets has a stack-based buffer overflow if the input to any of the printf family of functions is an 80-bit long double with a non-canonical bit pattern, as seen when passing a \x00\x04\x00\x00\x00\x00\x00\x00\x00\x04 value to sprintf. NOTE: the issue does not affect glibc by default in 2016 or later (i.e., 2.23 or later) because of commits made in 2015 for inlining of C99 math functions through use of GCC built-ins. In other words, the reference to 2.23 is intentional despite the mention of "Fixed for glibc 2.33" in the 26649 reference.
An off-by-one heap-based buffer overflow was found in the __vsyslog_internal function of the glibc library. This function is called by the syslog and vsyslog functions. This issue occurs when these functions are called with a message bigger than INT_MAX bytes, leading to an incorrect calculation of the buffer size to store the message, resulting in an application crash. This issue affects glibc 2.37 and newer.
Heap-based Buffer Overflow in GitHub repository vim/vim prior to 9.0.1969.
An issue was discovered in GnuTLS before 3.6.15. A server can trigger a NULL pointer dereference in a TLS 1.3 client if a no_renegotiation alert is sent with unexpected timing, and then an invalid second handshake occurs. The crash happens in the application's error handling path, where the gnutls_deinit function is called after detecting a handshake failure.
An issue was discovered in the yh_create_session() function of yubihsm-shell through 2.0.2. The function does not explicitly check the returned session id from the device. An invalid session id would lead to out-of-bounds read and write operations in the session array. This could be used by an attacker to cause a denial of service attack.
An issue was discovered in the _send_secure_msg() function of yubihsm-shell through 2.0.2. The function does not validate the embedded length field of a message received from the device. This could lead to an oversized memcpy() call that will crash the running process. This could be used by an attacker to cause a denial of service.
An issue was discovered in tcpreplay tcpprep v4.3.3. There is a heap buffer overflow vulnerability in MemcmpInterceptorCommon() that can make tcpprep crash and cause a denial of service.
Crash in the PVFS protocol dissector in Wireshark 3.6.0 to 3.6.1 and 3.4.0 to 3.4.11 allows denial of service via packet injection or crafted capture file
The code that processes control channel messages sent to `named` calls certain functions recursively during packet parsing. Recursion depth is only limited by the maximum accepted packet size; depending on the environment, this may cause the packet-parsing code to run out of available stack memory, causing `named` to terminate unexpectedly. Since each incoming control channel message is fully parsed before its contents are authenticated, exploiting this flaw does not require the attacker to hold a valid RNDC key; only network access to the control channel's configured TCP port is necessary. This issue affects BIND 9 versions 9.2.0 through 9.16.43, 9.18.0 through 9.18.18, 9.19.0 through 9.19.16, 9.9.3-S1 through 9.16.43-S1, and 9.18.0-S1 through 9.18.18-S1.
cyrus-sasl (aka Cyrus SASL) 2.1.27 has an out-of-bounds write leading to unauthenticated remote denial-of-service in OpenLDAP via a malformed LDAP packet. The OpenLDAP crash is ultimately caused by an off-by-one error in _sasl_add_string in common.c in cyrus-sasl.
An issue was discovered in Squid 3.x and 4.x through 4.8. Due to incorrect input validation, there is a heap-based buffer overflow that can result in Denial of Service to all clients using the proxy. Severity is high due to this vulnerability occurring before normal security checks; any remote client that can reach the proxy port can trivially perform the attack via a crafted URI scheme.
If the `recursive-clients` quota is reached on a BIND 9 resolver configured with both `stale-answer-enable yes;` and `stale-answer-client-timeout 0;`, a sequence of serve-stale-related lookups could cause `named` to loop and terminate unexpectedly due to a stack overflow. This issue affects BIND 9 versions 9.16.33 through 9.16.41, 9.18.7 through 9.18.15, 9.16.33-S1 through 9.16.41-S1, and 9.18.11-S1 through 9.18.15-S1.
In lldpd before 1.0.13, when decoding SONMP packets in the sonmp_decode function, it's possible to trigger an out-of-bounds heap read via short SONMP packets.
A heap-based buffer overflow vulnerability was found in ImageMagick in versions prior to 7.0.11-14 in ReadTIFFImage() in coders/tiff.c. This issue is due to an incorrect setting of the pixel array size, which can lead to a crash and segmentation fault.
Nagios NRPE 3.2.1 has a Heap-Based Buffer Overflow, as demonstrated by interpretation of a small negative number as a large positive number during a bzero call.
Any project that parses untrusted Protocol Buffers data containing an arbitrary number of nested groups / series of SGROUP tags can corrupted by exceeding the stack limit i.e. StackOverflow. Parsing nested groups as unknown fields with DiscardUnknownFieldsParser or Java Protobuf Lite parser, or against Protobuf map fields, creates unbounded recursions that can be abused by an attacker.
Mediainfo before version 20.08 has a heap buffer overflow vulnerability via MediaInfoLib::File_Gxf::ChooseParser_ChannelGrouping.
An issue was discovered in tcpreplay tcpprep v4.3.3. There is a heap buffer overflow vulnerability in get_l2len() that can make tcpprep crash and cause a denial of service.
fs/nfsd/trace.h in the Linux kernel before 5.13.4 might allow remote attackers to cause a denial of service (out-of-bounds read in strlen) by sending NFS traffic when the trace event framework is being used for nfsd.
Certain versions of the NetApp Service Processor and Baseboard Management Controller firmware allow a remote unauthenticated attacker to cause a Denial of Service (DoS).
net/sunrpc/xdr.c in the Linux kernel before 5.13.4 allows remote attackers to cause a denial of service (xdr_set_page_base slab-out-of-bounds access) by performing many NFS 4.2 READ_PLUS operations.
A flaw was found in Undertow that tripped the client-side invocation timeout with certain calls made over HTTP2. This flaw allows an attacker to carry out denial of service attacks.
A vulnerability in the filesystem image parser for Hierarchical File System Plus (HFS+) of ClamAV could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to an incorrect check for completion when a file is decompressed, which may result in a loop condition that could cause the affected software to stop responding. An attacker could exploit this vulnerability by submitting a crafted HFS+ filesystem image to be scanned by ClamAV on an affected device. A successful exploit could allow the attacker to cause the ClamAV scanning process to stop responding, resulting in a DoS condition on the affected software and consuming available system resources. For a description of this vulnerability, see the ClamAV blog .
In FreeBSD 12.0-STABLE before r350637, 12.0-RELEASE before 12.0-RELEASE-p9, 11.3-STABLE before r350638, 11.3-RELEASE before 11.3-RELEASE-p2, and 11.2-RELEASE before 11.2-RELEASE-p13, the bsnmp library is not properly validating the submitted length from a type-length-value encoding. A remote user could cause an out-of-bounds read or trigger a crash of the software such as bsnmpd resulting in a denial of service.
The Snappy frame decoder function doesn't restrict the chunk length which may lead to excessive memory usage. Beside this it also may buffer reserved skippable chunks until the whole chunk was received which may lead to excessive memory usage as well. This vulnerability can be triggered by supplying malicious input that decompresses to a very big size (via a network stream or a file) or by sending a huge skippable chunk.
An invalid pointer dereference on read can be triggered when an application tries to check a malformed DSA public key by the EVP_PKEY_public_check() function. This will most likely lead to an application crash. This function can be called on public keys supplied from untrusted sources which could allow an attacker to cause a denial of service attack. The TLS implementation in OpenSSL does not call this function but applications might call the function if there are additional security requirements imposed by standards such as FIPS 140-3.
A flaw was found in python. An improperly handled HTTP response in the HTTP client code of python may allow a remote attacker, who controls the HTTP server, to make the client script enter an infinite loop, consuming CPU time. The highest threat from this vulnerability is to system availability.
An invalid pointer dereference on read can be triggered when an application tries to load malformed PKCS7 data with the d2i_PKCS7(), d2i_PKCS7_bio() or d2i_PKCS7_fp() functions. The result of the dereference is an application crash which could lead to a denial of service attack. The TLS implementation in OpenSSL does not call this function however third party applications might call these functions on untrusted data.
jsoup is a Java library for working with HTML. Those using jsoup versions prior to 1.14.2 to parse untrusted HTML or XML may be vulnerable to DOS attacks. If the parser is run on user supplied input, an attacker may supply content that causes the parser to get stuck (loop indefinitely until cancelled), to complete more slowly than usual, or to throw an unexpected exception. This effect may support a denial of service attack. The issue is patched in version 1.14.2. There are a few available workarounds. Users may rate limit input parsing, limit the size of inputs based on system resources, and/or implement thread watchdogs to cap and timeout parse runtimes.
A vulnerability was found in Radare2 in version 5.3.1. Improper input validation when reading a crafted LE binary can lead to resource exhaustion and DoS.
A NULL pointer can be dereferenced when signatures are being verified on PKCS7 signed or signedAndEnveloped data. In case the hash algorithm used for the signature is known to the OpenSSL library but the implementation of the hash algorithm is not available the digest initialization will fail. There is a missing check for the return value from the initialization function which later leads to invalid usage of the digest API most likely leading to a crash. The unavailability of an algorithm can be caused by using FIPS enabled configuration of providers or more commonly by not loading the legacy provider. PKCS7 data is processed by the SMIME library calls and also by the time stamp (TS) library calls. The TLS implementation in OpenSSL does not call these functions however third party applications would be affected if they call these functions to verify signatures on untrusted data.
A security vulnerability has been identified in all supported versions of OpenSSL related to the verification of X.509 certificate chains that include policy constraints. Attackers may be able to exploit this vulnerability by creating a malicious certificate chain that triggers exponential use of computational resources, leading to a denial-of-service (DoS) attack on affected systems. Policy processing is disabled by default but can be enabled by passing the `-policy' argument to the command line utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function.
The Bzip2 decompression decoder function doesn't allow setting size restrictions on the decompressed output data (which affects the allocation size used during decompression). All users of Bzip2Decoder are affected. The malicious input can trigger an OOME and so a DoS attack
A flaw was found in undertow. This issue makes achieving a denial of service possible due to an unexpected handshake status updated in SslConduit, where the loop never terminates.
A flaw was found in the way nettle's RSA decryption functions handled specially crafted ciphertext. An attacker could use this flaw to provide a manipulated ciphertext leading to application crash and denial of service.
When reading a specially crafted 7Z archive, the construction of the list of codecs that decompress an entry can result in an infinite loop. This could be used to mount a denial of service attack against services that use Compress' sevenz package.
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack. The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected. These functions are also called indirectly by a number of other OpenSSL functions including PEM_X509_INFO_read_bio_ex() and SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal uses of these functions are not vulnerable because the caller does not free the header argument if PEM_read_bio_ex() returns a failure code. These locations include the PEM_read_bio_TYPE() functions as well as the decoders introduced in OpenSSL 3.0. The OpenSSL asn1parse command line application is also impacted by this issue.