An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. An SMM memory corruption vulnerability in the FvbServicesRuntimeDxe driver allows an attacker to write fixed or predictable data to SMRAM. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in AhciBusDxe in Insyde InsydeH2O with kernel 5.1 before 05.16.25, 5.2 before 05.26.25, 5.3 before 05.35.25, 5.4 before 05.43.25, and 5.5 before 05.51.25. A vulnerability exists in the SMM (System Management Mode) branch that registers a SWSMI handler that does not sufficiently check or validate the allocated buffer pointer (the CommBuffer+8 location).
An issue was discovered in IdeBusDxe in Insyde InsydeH2O with kernel 5.1 before 05.16.25, 5.2 before 05.26.25, 5.3 before 05.35.25, 5.4 before 05.43.25, and 5.5 before 05.51.25. A vulnerability exists in the SMM (System Management Mode) branch that registers a SWSMI handler that does not sufficiently check or validate the allocated buffer pointer (the status code saved at the CommBuffer+4 location).
An issue was discovered in HddPassword in Insyde InsydeH2O with kernel 5.1 before 05.16.23, 5.2 before 05.26.23, 5.3 before 05.35.23, 5.4 before 05.43.22, and 5.5 before 05.51.22. An SMM memory corruption vulnerability allows an attacker to write fixed or predictable data to SMRAM. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in UsbCoreDxe in Insyde InsydeH2O with kernel 5.5 before 05.51.45, 5.4 before 05.43.45, 5.3 before 05.35.45, 5.2 before 05.26.45, 5.1 before 05.16.45, and 5.0 before 05.08.45. An SMM callout vulnerability allows an attacker to hijack execution flow of code running in System Management Mode. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in StorageSecurityCommandDxe in Insyde InsydeH2O with Kernel 5.1 before 05.14.28, Kernel 5.2 before 05.24.28, and Kernel 5.3 before 05.32.25. An SMM callout vulnerability allows an attacker to hijack execution flow of code running in System Management Mode. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in Insyde InsydeH2O Kernel 5.0 through 05.08.41, Kernel 5.1 through 05.16.41, Kernel 5.2 before 05.23.22, and Kernel 5.3 before 05.32.22. An Int15ServiceSmm SMM callout vulnerability allows an attacker to hijack execution flow of code running in System Management Mode. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in Insyde InsydeH2O with Kernel 5.0 before 05.08.42, Kernel 5.1 before 05.16.42, Kernel 5.2 before 05.26.42, Kernel 5.3 before 05.35.42, Kernel 5.4 before 05.42.51, and Kernel 5.5 before 05.50.51. An SMM memory corruption vulnerability in FvbServicesRuntimeDxe allows a possible attacker to write fixed or predictable data to SMRAM. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in NvmExpressDxe in the kernel 5.0 through 5.5 in Insyde InsydeH2O. There is an SMM callout that allows an attacker to access the System Management Mode and execute arbitrary code. This occurs because of Inclusion of Functionality from an Untrusted Control Sphere.
An issue was discovered in AhciBusDxe in the kernel 5.0 through 5.5 in Insyde InsydeH2O. There is an SMM callout that allows an attacker to access the System Management Mode and execute arbitrary code. This occurs because of Inclusion of Functionality from an Untrusted Control Sphere.
An issue was discovered in SdHostDriver in Insyde InsydeH2O with kernel 5.1 before 05.16.25, 5.2 before 05.26.25, 5.3 before 05.35.25, 5.4 before 05.43.25, and 5.5 before 05.51.25. A vulnerability exists in the SMM (System Management Mode) branch that registers a SWSMI handler that does not sufficiently check or validate the allocated buffer pointer (CommBufferData).
An issue was discovered in SdHostDriver in the kernel 5.0 through 5.5 in Insyde InsydeH2O. There is an SMM callout that allows an attacker to access the System Management Mode and execute arbitrary code. This occurs because of a Numeric Range Comparison Without a Minimum Check.
An issue was discovered in Insyde InsydeH2O Kernel 5.0 before 05.09.11, 5.1 before 05.17.11, 5.2 before 05.27.11, 5.3 before 05.36.11, 5.4 before 05.44.11, and 5.5 before 05.52.11 affecting FwBlockServiceSmm. Software SMI services that use the Communicate() function of the EFI_SMM_COMMUNICATION_PROTOCOL do not check whether the address of the buffer is valid, which allows use of SMRAM, MMIO, or OS kernel addresses.
An issue was discovered in AhciBusDxe in the kernel 5.0 through 5.5 in Insyde InsydeH2O. Because of an Untrusted Pointer Dereference that causes SMM memory corruption, an attacker may be able to write fixed or predictable data to SMRAM. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in AhciBusDxe in Insyde InsydeH2O with kernel 5.0 before 05.08.41, 5.1 before 05.16.29, 5.2 before 05.26.29, 5.3 before 05.35.29, 5.4 before 05.43.29, and 5.5 before 05.51.29. An SMM callout vulnerability allows an attacker to hijack the execution flow of code running in System Management Mode. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. An SMM callout vulnerability in the SMM driver FwBlockServiceSmm, creating SMM, leads to arbitrary code execution. An attacker can replace the pointer to the UEFI boot service GetVariable with a pointer to malware, and then generate a software SMI.
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. A stack buffer overflow vulnerability in the MebxConfiguration driver leads to arbitrary code execution. Control of a UEFI variable under the OS can cause this overflow when read by BIOS code.
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. An SMM callout vulnerability in the SMM driver in UsbLegacyControlSmm leads to possible arbitrary code execution in SMM and escalation of privileges. An attacker could overwrite the function pointers in the EFI_BOOT_SERVICES table before the USB SMI handler triggers. (This is not exploitable from code running in the operating system.)
Initialization function in PnpSmm could lead to SMRAM corruption when using subsequent PNP SMI functions Initialization function in PnpSmm could lead to SMRAM corruption when using subsequent PNP SMI functions. This issue was discovered by Insyde engineering during a security review. Fixed in: Kernel 5.1: Version 05.17.25 Kernel 5.2: Version 05.27.25 Kernel 5.3: Version 05.36.25 Kernel 5.4: Version 05.44.25 Kernel 5.5: Version 05.52.25 https://www.insyde.com/security-pledge/SA-2022064
Manipulation of the input address in PnpSmm function 0x52 could be used by malware to overwrite SMRAM or OS kernel memory. Function 0x52 of the PnpSmm driver is passed the address and size of data to write into the SMBIOS table, but manipulation of the address could be used by malware to overwrite SMRAM or OS kernel memory. This issue was discovered by Insyde engineering during a security review. This issue is fixed in: Kernel 5.0: 05.09.41 Kernel 5.1: 05.17.43 Kernel 5.2: 05.27.30 Kernel 5.3: 05.36.30 Kernel 5.4: 05.44.30 Kernel 5.5: 05.52.30 https://www.insyde.com/security-pledge/SA-2022065
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. The FwBlockSericceSmm driver does not properly validate input parameters for a software SMI routine, leading to memory corruption of arbitrary addresses including SMRAM, and possible arbitrary code execution.
SMI functions in AhciBusDxe use untrusted inputs leading to corruption of SMRAM. SMI functions in AhciBusDxe use untrusted inputs leading to corruption of SMRAM. This issue was discovered by Insyde during security review. It was fixed in: Kernel 5.0: version 05.09.18 Kernel 5.1: version 05.17.18 Kernel 5.2: version 05.27.18 Kernel 5.3: version 05.36.18 Kernel 5.4: version 05.44.18 Kernel 5.5: version 05.52.18 https://www.insyde.com/security-pledge/SA-2022059
Incorrect pointer checks within the NvmExpressDxe driver can allow tampering with SMRAM and OS memory Incorrect pointer checks within the NvmExpressDxe driver can allow tampering with SMRAM and OS memory. This issue was discovered by Insyde during security review. Fixed in: Kernel 5.1: Version 05.17.23 Kernel 5.2: Version 05.27.23 Kernel 5.3: Version 05.36.23 Kernel 5.4: Version 05.44.23 Kernel 5.5: Version 05.52.23 https://www.insyde.com/security-pledge/SA-2022061
In UsbCoreDxe, untrusted input may allow SMRAM or OS memory tampering Use of untrusted pointers could allow OS or SMRAM memory tampering leading to escalation of privileges. This issue was discovered by Insyde during security review. It was fixed in: Kernel 5.0: version 05.09.21 Kernel 5.1: version 05.17.21 Kernel 5.2: version 05.27.21 Kernel 5.3: version 05.36.21 Kernel 5.4: version 05.44.21 Kernel 5.5: version 05.52.21 https://www.insyde.com/security-pledge/SA-2022058
Use of a untrusted pointer allows tampering with SMRAM and OS memory in SdHostDriver and SdMmcDevice Use of a untrusted pointer allows tampering with SMRAM and OS memory in SdHostDriver and SdMmcDevice. This issue was discovered by Insyde during security review. It was fixed in: Kernel 5.0: version 05.09.17 Kernel 5.1: version 05.17.17 Kernel 5.2: version 05.27.17 Kernel 5.3: version 05.36.17 Kernel 5.4: version 05.44.17 Kernel 5.5: version 05.52.17 https://www.insyde.com/security-pledge/SA-2022062
An issue was discovered in NvmExpressDxe in Insyde InsydeH2O with kernel 5.1 through 5.5. An SMM memory corruption vulnerability allows an attacker to write fixed or predictable data to SMRAM. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in NvmExpressDxe in the kernel 5.0 through 5.5 in Insyde InsydeH2O. Because of an Untrusted Pointer Dereference that causes SMM memory corruption, an attacker may be able to write fixed or predictable data to SMRAM. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in SdLegacySmm in Insyde InsydeH2O with kernel 5.1 before 05.15.11, 5.2 before 05.25.11, 5.3 before 05.34.11, and 5.4 before 05.42.11. The software SMI handler allows untrusted external input because it does not verify CommBuffer.
Improper input validation was discovered in UsbCoreDxe in Insyde InsydeH2O kernel 5.4 before 05.47.01, 5.5 before 05.55.01, 5.6 before 05.62.01, and 5.7 before 05.71.01. The SMM module has an SMM call out vulnerability which can be used to write arbitrary memory inside SMRAM and execute arbitrary code at SMM level.
An issue was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. Due to insufficient input validation, an attacker can tamper with a runtime-accessible EFI variable to cause a dynamic BAR setting to overlap SMRAM.
An issue SMM memory leak vulnerability in SMM driver (SMRAM was discovered in Insyde InsydeH2O with kernel 5.0 through 5.5. An attacker can dump SMRAM contents via the software SMI provided by the FvbServicesRuntimeDxe driver to read the contents of SMRAM, leading to information disclosure.
In the kernel in Insyde InsydeH2O 5.x, certain SMM drivers did not correctly validate the CommBuffer and CommBufferSize parameters, allowing callers to corrupt either the firmware or the OS memory. The fixed versions for this issue in the AhciBusDxe, IdeBusDxe, NvmExpressDxe, SdHostDriverDxe, and SdMmcDeviceDxe drivers are 05.16.25, 05.26.25, 05.35.25, 05.43.25, and 05.51.25 (for Kernel 5.1 through 5.5).
An issue was discovered in Insyde InsydeH2O kernel 5.2 before version 05.29.50, kernel 5.3 before version 05.38.50, kernel 5.4 before version 05.46.50, kernel 5.5 before version 05.54.50, kernel 5.6 before version 05.61.50, and kernel 5.7 before version 05.70.50. In VariableRuntimeDxe driver, SecureBootHandler uses DataSize and VariableNameSize when determining if the data or name are in the buffer, but these are supplied by the caller and therefore cannot be trusted.
Improper input validation in some Intel(R) CIP software before version 2.4.10852 may allow a privileged user to potentially enable escalation of privilege via local access.
Improper input validation in the Intel(R) Server Board S2600ST Family BIOS and Firmware Update software all versions may allow a privileged user to potentially enable escalation of privilege via local access.
Improper input validation in firmware for some Intel(R) NUC may allow a privileged user to potentially enableescalation of privilege via local access.
Dell Client Platform BIOS contains an Improper Input Validation vulnerability in an externally developed component. A high privileged attacker with local access could potentially exploit this vulnerability, leading to Code execution.
Dell Client Platform BIOS contains an Improper Input Validation vulnerability in an externally developed component. A high privileged attacker with local access could potentially exploit this vulnerability, leading to Code execution.
Dell Client Platform BIOS contains an Improper Input Validation vulnerability in an externally developed component. A high privileged attacker with local access could potentially exploit this vulnerability, leading to Code execution.
Improper input validation in UEFI firmware for some Intel(R) processors may allow a privileged user to potentially enable escalation of privilege via local access.
Improper input validation for some Intel(R) Server Boards, Server Systems and Compute Modules before version 1.59 may allow a privileged user to potentially enable escalation of privilege via local access.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability which could allow a privileged attacker to escalate permissions. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
A remote code execution vulnerability exists when Windows Hyper-V on a host server fails to properly validate input from an authenticated user on a guest operating system, aka 'Windows Hyper-V Remote Code Execution Vulnerability'.
Insufficient input validation in system firmware for Intel(R) Xeon(R) Scalable Processors, Intel(R) Xeon(R) Processors D Family, Intel(R) Xeon(R) Processors E5 v4 Family, Intel(R) Xeon(R) Processors E7 v4 Family and Intel(R) Atom(R) processor C Series may allow a privileged user to potentially enable escalation of privilege, denial of service and/or information disclosure via local access.
Improper input validation in some Intel(R) NUC BIOS firmware may allow a privileged user to potentially enable escalation of privilege via local access.
Improper input validation in some Intel(R) NUC Rugged Kit, Intel(R) NUC Kit and Intel(R) Compute Element BIOS firmware may allow a privileged user to potentially enable escalation of privilege via local access.
Improper input validation vulnerability in mPOS fiserve trustlet prior to SMR May-2023 Release 1 allows local attackers to execute arbitrary code.
Improper input validation in kernel mode driver for some Intel(R) Server Board S2600ST Family firmware before version 02.01.0017 may allow a privileged user to potentially enable escalation of privilege via local access.
A vulnerability in the inter-device communication mechanisms between devices that are running Cisco Firepower Threat Defense (FTD) Software and devices that are running Cisco Firepower Management (FMC) Software could allow an authenticated, local attacker to execute arbitrary commands with root permissions on the underlying operating system of an affected device. This vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by accessing the expert mode of an affected device and submitting specific commands to a connected system. A successful exploit could allow the attacker to execute arbitrary code in the context of an FMC device if the attacker has administrative privileges on an associated FTD device. Alternatively, a successful exploit could allow the attacker to execute arbitrary code in the context of an FTD device if the attacker has administrative privileges on an associated FMC device.
Improper input validation within the AmdPspP2CmboxV2 driver may allow a privileged attacker to overwrite SMRAM, leading to arbitrary code execution.