Improper input validation in some Intel(R) XMM(TM) 7560 Modem software before version M2_7560_R_01.2146.00 may allow a privileged user to potentially enable escalation of privilege via physical access.
Improper authentication in some Intel(R) XMM(TM) 7560 Modem software before version M2_7560_R_01.2146.00 may allow a privileged user to potentially enable escalation of privilege via physical access.
Improper buffer restrictions in some Intel(R) XMM(TM) 7560 Modem software before version M2_7560_R_01.2146.00 may allow a privileged user to potentially enable escalation of privilege via physical access.
Improper initialization in the firmware for some Intel(R) NUC Laptop Kits before version BC0076 may allow a privileged user to potentially enable escalation of privilege via physical access.
Heap overflow in subsystem in Intel(R) CSME before versions 11.8.70, 11.11.70, 11.22.70, 12.0.45; Intel(R) TXE before versions 3.1.70 and 4.0.20 may allow an unauthenticated user to potentially enable escalation of privileges, information disclosure or denial of service via adjacent access.
Out of bound write vulnerability in subsystem for Intel(R) AMT before versions 11.8.65, 11.11.65, 11.22.65, 12.0.35 may allow an authenticated user to potentially enable escalation of privilege via adjacent network access.
Memory corruption in Intel(R) Baseboard Management Controller firmware may allow an unauthenticated user to potentially enable denial of service via network access.
Memory corruption in Intel Active Management Technology in Intel Converged Security Manageability Engine Firmware 6.x / 7.x / 8.x / 9.x / 10.x / 11.0 / 11.5 / 11.6 / 11.7 / 11.10 / 11.20 could be triggered by an attacker with local administrator permission on the system.
ConnMan (aka Connection Manager) 1.30 through 1.39 has a stack-based buffer overflow in uncompress in dnsproxy.c via NAME, RDATA, or RDLENGTH (for A or AAAA).
Out-of-bounds write in the Intel(R) Kernelflinger project may allow an authenticated user to potentially enable escalation of privilege via local access.
Out of bounds write in firmware for some Intel(R) FPGA products before version 2.9.0 may allow escalation of privilege and information disclosure.
Out-of-bounds write in the BIOS authenticated code module for some Intel(R) Processors may allow a privileged user to potentially enable aescalation of privilege via local access.
Out-of-bounds write in firmware for some Intel(R) NUCs may allow an authenticated user to potentially enable denial of service via local access.
Heap overflow in Intel Trace Analyzer 2018 in Intel Parallel Studio XE 2018 Update 3 may allow an authenticated user to potentially escalate privileges via local access.
A stack-based buffer overflow in dnsproxy in ConnMan before 1.39 could be used by network adjacent attackers to execute code.
AMI’s SPx contains a vulnerability in the BMC where an Attacker may cause a heap memory corruption via an adjacent network. A successful exploitation of this vulnerability may lead to a loss of confidentiality, integrity, and/or availability.
AMI’s SPx contains a vulnerability in the BMC where an Attacker may cause a heap memory corruption via an adjacent network. A successful exploitation of this vulnerability may lead to a loss of confidentiality, integrity, and/or availability.
Out of bounds write in the BMC firmware for Intel(R) Server Board M10JNP2SB before version EFI BIOS 7215, BMC 8100.01.08 may allow an unauthenticated user to potentially enable a denial of service via adjacent access.
Out-of-bounds write in the firmware for some Intel(R) Processors may allow a privileged user to potentially enable an escalation of privilege via local access.
Out-of-bounds write in the firmware for Intel(R) Ethernet 700 Series Controllers before version 8.2 may allow a privileged user to potentially enable an escalation of privilege via local access.
Out-of-bounds write in the BIOS firmware for some Intel(R) Processors may allow a privileged user to potentially enable aescalation of privilege via local access.
Out-of-bounds write in some Intel(R) RealSense(TM) ID software for Intel(R) RealSense(TM) 450 FA in version 0.25.0 may allow an authenticated user to potentially enable escalation of privilege via local access.
Out-of-bounds write in firmware for some Intel(R) PROSet/Wireless WiFi in multiple operating systems and some Killer(TM) WiFi in Windows 10 may allow a privileged user to potentially enable denial of service via local access.
Heap-based buffer overflow in the firmware for some Intel(R) Server Boards, Server Systems and Compute Modules before version 1.59 may allow an unauthenticated user to potentially enable escalation of privilege via adjacent access.
Out of bounds write in Intel BIOS platform sample code for some Intel(R) Processors may allow a privileged user to potentially enable escalation of privilege via local access.
Out-of-bounds write in Kernel Mode Driver for some Intel(R) Graphics Drivers before version 26.20.100.7755 may allow an authenticated user to potentially enable denial of service via local access.
Out-of-bounds write in IPv6 subsystem for Intel(R) AMT, Intel(R) ISM versions before 11.8.80, 11.12.80, 11.22.80, 12.0.70, 14.0.45 may allow an unauthenticated user to potentially enable escalation of privileges via network access.
Heap-based overflow in Intel(R) SoC Watch based software before version 2021.1 may allow a privileged user to potentially enable escalation of privilege via local access.
Out-of-bounds write in the Intel(R) Trace Analyzer and Collector software before version 2021.5 may allow an authenticated user to potentially enable escalation of privilege via local access.
Out-of-bounds write in some Intel(R) Arc(TM) & Iris(R) Xe Graphics - WHQL - Windows drivers before version 31.0.101.4255 may allow authenticated user to potentially enable escalation of privilege via local access.
Improper restriction of operations within the bounds of a memory buffer in some Intel(R) i915 Graphics drivers for linux before kernel version 6.2.10 may allow an authenticated user to potentially enable escalation of privilege via local access.
A potential attacker can execute an arbitrary code at the time of the PEI phase and influence the subsequent boot stages. This can lead to the mitigations bypassing, physical memory contents disclosure, discovery of any secrets from any Virtual Machines (VMs) and bypassing memory isolation and confidential computing boundaries. Additionally, an attacker can build a payload which can be injected into the SMRAM memory. This issue affects: Module name: PlatformInitAdvancedPreMem SHA256: 644044fdb8daea30a7820e0f5f88dbf5cd460af72fbf70418e9d2e47efed8d9b Module GUID: EEEE611D-F78F-4FB9-B868-55907F169280 This issue affects: AMI Aptio 5.x.
Incorrect pointer checks within the the FwBlockServiceSmm driver can allow arbitrary RAM modifications During review of the FwBlockServiceSmm driver, certain instances of SpiAccessLib could be tricked into writing 0xff to arbitrary system and SMRAM addresses. Fixed in: INTEL Purley-R: 05.21.51.0048 Whitley: 05.42.23.0066 Cedar Island: 05.42.11.0021 Eagle Stream: 05.44.25.0052 Greenlow/Greenlow-R(skylake/kabylake): Trunk Mehlow/Mehlow-R (CoffeeLake-S): Trunk Tatlow (RKL-S): Trunk Denverton: 05.10.12.0042 Snow Ridge: Trunk Graneville DE: 05.05.15.0038 Grangeville DE NS: 05.27.26.0023 Bakerville: 05.21.51.0026 Idaville: 05.44.27.0030 Whiskey Lake: Trunk Comet Lake-S: Trunk Tiger Lake H/UP3: 05.43.12.0052 Alder Lake: 05.44.23.0047 Gemini Lake: Not Affected Apollo Lake: Not Affected Elkhart Lake: 05.44.30.0018 AMD ROME: trunk MILAN: 05.36.10.0017 GENOA: 05.52.25.0006 Snowy Owl: Trunk R1000: 05.32.50.0018 R2000: 05.44.30.0005 V2000: Trunk V3000: 05.44.30.0007 Ryzen 5000: 05.44.30.0004 Embedded ROME: Trunk Embedded MILAN: Trunk Hygon Hygon #1/#2: 05.36.26.0016 Hygon #3: 05.44.26.0007 https://www.insyde.com/security-pledge/SA-2022060
Out-of-bounds write for some Intel(R) Trace Analyzer and Collector software before version 2021.8.0 published Dec 2022 may allow an authenticated user to potentially escalation of privilege via local access.
Stack-based buffer overflow for some Intel(R) Trace Analyzer and Collector software before version 2021.8.0 published Dec 2022 may allow an authenticated user to potentially escalation of privilege via local access.
Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi software before version 22.140 may allow an unauthenticated user to potentially enable denial of service via adjacent access.
Out-of-bounds write in Intel(R) Media SDK all versions and some Intel(R) oneVPL software before version 23.3.5 may allow an authenticated user to potentially enable escalation of privilege via local access.
Out-of-bounds write in software for the Intel QAT Driver for Windows before version 1.9.0-0008 may allow an authenticated user to potentially enable escalation of privilege via local access.
Stack-based buffer overflow for some Intel(R) Trace Analyzer and Collector software before version 2021.8.0 published Dec 2022 may allow an authenticated user to potentially enable escalation of privilege via local access.
Out of bounds write in some Intel(R) Server Board BMC firmware before version 2.90 may allow a privileged user to enable escalation of privilege via local access.
Out-of-bounds write in firmware for some Intel(R) FPGA products before version 2.8.1 may allow a privileged user to potentially enable information disclosure via local access.
Out-of-bounds write in some Intel(R) XMM(TM) 7560 Modem software before version M2_7560_R_01.2146.00 may allow an unauthenticated user to potentially enable escalation of privilege via adjacent access.
Out of bounds write in the BMC firmware for some Intel(R) Server Boards, Server Systems and Compute Modules before version 2.48.ce3e3bd2 may allow an authenticated user to potentially enable escalation of privilege via local access.
A stack buffer overflow vulnerability discovered in AsfSecureBootDxe in Insyde InsydeH2O with kernel 5.0 through 5.5 allows attackers to run arbitrary code execution during the DXE phase.
Out-of-bounds write in the Intel(R) XTU before version 6.5.3.25 may allow a privileged user to potentially enable denial of service via local access.
AMI’s SPx contains a vulnerability in the BMC where an Attacker may cause a heap memory corruption via an adjacent network. A successful exploitation of this vulnerability may lead to a loss of confidentiality, integrity, and/or availability.
AMI’s SPx contains a vulnerability in the BMC where an Attacker may cause a stack-based buffer overflow via an adjacent network. A successful exploitation of this vulnerability may lead to a loss of confidentiality, integrity, and/or availability.
Buffer underflow in some Intel(R) PCM software before version 202307 may allow an unauthenticated user to potentially enable denial of service via network access.
AMI’s SPx contains a vulnerability in the BMC where an Attacker may cause a stack memory corruption via an adjacent network. A successful exploitation of this vulnerability may lead to a loss of confidentiality, integrity, and/or availability.
Out-of-bounds write in some Intel(R) Graphics Drivers before version 15.36.39.5143 may allow an authenticated user to potentially enable denial of service via local access.