NVIDIA DGX-1 BMC contains a vulnerability in the IPMI handler of the AMI MegaRAC BMC , where an attacker with the appropriate level of authorization can cause a buffer overflow, which may lead to denial of service, information disclosure, or arbitrary code execution.
NVIDIA BMC contains a vulnerability in IPMI handler, where an authorized attacker can cause a buffer overflow and cause a denial of service or gain code execution.
NVIDIA BMC contains a vulnerability in IPMI handler, where an authorized attacker can cause a buffer overflow and cause a denial of service or gain code execution
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where an input index is not validated, which may lead to buffer overrun, which in turn may cause data tampering, information disclosure, or denial of service.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where an input index is not validated, which may lead to buffer overrun, which in turn may cause data tampering, information disclosure, or denial of service.
NVIDIA vGPU software for Linux contains a vulnerability in the Virtual GPU Manager, where the guest OS could cause buffer overrun in the host. A successful exploit of this vulnerability might lead to information disclosure, data tampering, escalation of privileges, and denial of service.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager, where a malicious guest could cause memory corruption. A successful exploit of this vulnerability might lead to code execution, denial of service, information disclosure, or data tampering.
NVIDIA Megatron-LM for all platforms contains a vulnerability in a script, where malicious data created by an attacker may cause a code injection issue. A successful exploit of this vulnerability may lead to code execution, escalation of privileges, information disclosure, data tampering.
NVIDIA vGPU software contains a vulnerability in the GPU kernel driver of the vGPU Manager for all supported hypervisors, where a user of the guest OS can cause an improper input validation by compromising the guest OS kernel. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, and information disclosure.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin) that could allow an attacker to cause stack-based buffer overflow and put a customized ROP gadget on the stack. Such an attack may lead to information disclosure, data tampering, or denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8).
NVIDIA Shield TV Experience prior to v8.0.1, NVIDIA Tegra software contains a vulnerability in the bootloader, where it does not validate the fields of the boot image, which may lead to code execution, denial of service, escalation of privileges, and information disclosure.
NVIDIA GeForce Experience, all versions prior to 3.20.2, contains a vulnerability when GameStream is enabled in which an attacker with local system access can corrupt a system file, which may lead to denial of service or escalation of privileges.
NVIDIA GeForce Experience, all versions prior to 3.20.1, contains a vulnerability in the Downloader component in which a user with local system access can craft input that may allow malicious files to be downloaded and saved. This behavior may lead to code execution, denial of service, or information disclosure.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the service host component, in which the application resources integrity check may be missed. Such an attack may lead to code execution, denial of service or information disclosure.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the Inter Process Communication APIs, in which improper access control may lead to code execution, denial of service, or information disclosure.
Bootloader contains a vulnerability in NVIDIA MB2 where a potential heap overflow could cause memory corruption, which might lead to denial of service or code execution.
NVIDIA DCGM, all versions prior to 2.2.9, contains a vulnerability in the DIAG module where any user can inject shared libraries into the DCGM server, which is usually running as root, which may lead to privilege escalation, total loss of confidentiality and integrity, and complete denial of service.
Trusty TLK contains a vulnerability in the NVIDIA TLK kernel function where a lack of checks allows the exploitation of an integer overflow on the size parameter of the tz_map_shared_mem function, which might lead to denial of service, information disclosure, or data tampering.
Bootloader contains a vulnerability in NVIDIA MB2 where potential heap overflow might cause corruption of the heap metadata, which might lead to arbitrary code execution, denial of service, and information disclosure during secure boot.
Trusty (the trusted OS produced by NVIDIA for Jetson devices) driver contains a vulnerability in the NVIDIA OTE protocol message parsing code where an integer overflow in a malloc() size calculation leads to a buffer overflow on the heap, which might result in information disclosure, escalation of privileges, and denial of service.
Bootloader contains a vulnerability in NVIDIA TegraBoot where a potential heap overflow might allow an attacker to control all the RAM after the heap block, leading to denial of service or code execution.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape in which a NULL pointer is dereferenced, which may lead to denial of service or escalation of privileges.
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape in which the size of an input buffer is not validated, which may lead to denial of service or escalation of privileges.
NVIDIA Linux distributions contain a vulnerability in nvmap ioctl, which allows any user with a local account to exploit a use-after-free condition, leading to code privilege escalation, loss of confidentiality and integrity, or denial of service.
NVIDIA NeMo Framework for all platforms contains a vulnerability in a voice-preprocessing script, where malicious input created by an attacker could cause a code injection. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering.
The Escape interface in the Kernel Mode Driver layer in the NVIDIA GPU graphics driver R340 before 341.95 and R352 before 354.74 on Windows improperly allows access to restricted functionality, which allows local users to gain privileges via unspecified vectors.
NVIDIA DGX H100 BMC contains a vulnerability in the REST service where a host user may cause as improper authentication issue. A successful exploit of this vulnerability may lead to escalation of privileges, information disclosure, code execution, and denial of service.
NVIDIA DGX H100 BMC contains a vulnerability in IPMI, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to code execution, denial of services, escalation of privileges, and information disclosure.
NVIDIA GPU Display Driver for Windows contains a vulnerability in wksServicePlugin.dll, where the driver implementation does not restrict or incorrectly restricts access from the named pipe server to a connecting client, which may lead to potential impersonation to the client's secure context.
NVIDIA GPU Display Driver for Windows contains a vulnerability where an attacker may be able to write arbitrary data to privileged locations by using reparse points. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, or data tampering.
NVIDIA DGX A100 SBIOS contains a vulnerability where an attacker may cause an SMI callout vulnerability that could be used to execute arbitrary code at the SMM level. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, and information disclosure.
NVIDIA Isaac-GR00T for all platforms contains a vulnerability in a Python component, where an attacker could cause a code injection issue. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys), where an attacker could cause an integer overflow. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, or information disclosure.
NVIDIA runx contains a vulnerability where an attacker could cause a code injection. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA Resiliency Extension for Linux contains a vulnerability in the checkpointing core, where an attacker may cause a race condition. A successful exploit of this vulnerability might lead to information disclosure, data tampering, denial of service, or escalation of privileges.
NVIDIA DGX Spark GB10 contains a vulnerability in SROOT firmware where an attacker could cause an out-of-bound write. A successful exploit of this vulnerability might lead to code execution, data tampering, denial of service, or escalation of privileges.
NVIDIA Display Driver for Linux contains a vulnerability in the NVIDIA kernel module where an attacker could cause an integer overflow or wraparound. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, or information disclosure.
NVIDIA Display Driver for Windows contains a vulnerability where an attacker could trigger a use after free. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, and information disclosure.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager, where a malicious guest could cause heap memory access after the memory is freed. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, or information disclosure.
NVIDIA DGX Spark GB10 contains a vulnerability in SROOT, where an attacker could use privileged access to gain access to SoC protected areas. A successful exploit of this vulnerability might lead to code execution, information disclosure, data tampering, denial of service, or escalation of privileges.
NVIDIA Merlin Transformers4Rec for all platforms contains a vulnerability where an attacker could cause code injection. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering.
NVIDIA Isaac-GR00T for all platforms contains a vulnerability in a Python component, where an attacker could cause a code injection issue. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering.
NVIDIA NeMo Framework for all platforms contains a vulnerability in the bert services component where malicious data created by an attacker may cause a code injection. A successful exploit of this vulnerability may lead to Code execution, Escalation of privileges, Information disclosure, and Data tampering.
NVIDIA DGX Spark GB10 contains a vulnerability in SROOT firmware, where an attacker could cause an out-of-bound write. A successful exploit of this vulnerability might lead to code execution, data tampering, denial of service, information disclosure, or escalation of privileges.
NVIDIA DGX Spark GB10 contains a vulnerability in SROOT firmware, where an attacker could cause unexpected memory buffer operations. A successful exploit of this vulnerability might lead to data tampering, denial of service, or escalation of privileges.
NVIDIA DGX-1 SBIOS contains a vulnerability in Bds, which may lead to code execution, denial of service, and escalation of privileges.
NVIDIA DGX H100 BMC contains a vulnerability in the host KVM daemon, where an authenticated local attacker may cause corruption of kernel memory. A successful exploit of this vulnerability may lead to arbitrary kernel code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA DGX-1 BMC contains a vulnerability in the IPMI handler, where an attacker with the appropriate level of authorization can upload and download arbitrary files under certain circumstances, which may lead to denial of service, escalation of privileges, information disclosure, and data tampering.
NVIDIA ConnectX Host Firmware for the BlueField Data Processing Unit contains a vulnerability where a restricted host may cause an incorrect user management error. A successful exploit of this vulnerability may lead to escalation of privileges.
NVIDIA DGX A100/A800 contains a vulnerability in SBIOS where an attacker may cause improper input validation by providing configuration information in an unexpected format. A successful exploit of this vulnerability may lead to denial of service, information disclosure, and data tampering.