NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where an input index is not validated, which may lead to buffer overrun, which in turn may cause data tampering, information disclosure, or denial of service.
NVIDIA CUDA Toolkit SDK contains a stack-based buffer overflow vulnerability in cuobjdump, where an unprivileged remote attacker could exploit this buffer overflow condition by persuading a local user to download a specially crafted corrupted file and execute cuobjdump against it locally, which may lead to a limited denial of service and some loss of data integrity for the local user.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user-mode layer, where an unprivileged user can cause an out-of-bounds write, which may lead to code execution, information disclosure, and denial of service.
NVIDIA DGX A100 contains a vulnerability in SBIOS in the SmbiosPei, which may allow a highly privileged local attacker to cause an out-of-bounds write, which may lead to code execution, denial of service, compromised integrity, and information disclosure.
NVIDIA DGX A100 contains a vulnerability in SBIOS in the IpSecDxe, where a user with elevated privileges and a preconditioned heap can exploit an out-of-bounds write vulnerability, which may lead to code execution, denial of service, data integrity impact, and information disclosure.
NVIDIA GPU display driver for Windows and Linux contains a vulnerability where data is written past the end or before the beginning of a buffer. A successful exploit of this vulnerability might lead to information disclosure, denial of service, or data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys), where a local user with basic capabilities can cause an out-of-bounds write, which may lead to code execution, denial of service, escalation of privileges, information disclosure, or data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape, where a failure to properly validate data might allow an attacker with basic user capabilities to cause an out-of-bounds access in kernel mode, which could lead to denial of service, information disclosure, escalation of privileges, or data tampering.
NVIDIA Jetson Linux Driver Package contains a vulnerability in the Cboot module tegrabl_cbo.c, where insufficient validation of untrusted data may allow a local attacker with elevated privileges to cause a memory buffer overflow, which may lead to code execution, loss of integrity, limited denial of service, and some impact to confidentiality.
NVIDIA DGX A100 contains a vulnerability in SBIOS in the BiosCfgTool, where a local user with elevated privileges can read and write beyond intended bounds in SMRAM, which may lead to code execution, escalation of privileges, denial of service, and information disclosure. The scope of impact can extend to other components.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer, where an unprivileged regular user on the network can cause an out-of-bounds write through a specially crafted shader, which may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. The scope of the impact may extend to other components.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the ECC layer, where an unprivileged regular user can cause an out-of-bounds write, which may lead to denial of service and data tampering.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the DirectX11 user mode driver (nvwgf2um/x.dll), where an unauthorized attacker on the network can cause an out-of-bounds write through a specially crafted shader, which may lead to code execution to cause denial of service, escalation of privileges, information disclosure, and data tampering. The scope of the impact may extend to other components.
NVIDIA Jetson Linux Driver Package contains a vulnerability in the Cboot blob_decompress function, where insufficient validation of untrusted data may allow a local attacker with elevated privileges to cause a memory buffer overflow, which may lead to code execution, limited loss of Integrity, and limited denial of service. The scope of impact can extend to other components.
Bootloader contains a vulnerability in NVIDIA MB2 where a potential heap overflow might lead to denial of service or escalation of privileges.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager, where a malicious guest could cause a stack buffer overflow. A successful exploit of this vulnerability might lead to code execution, denial of service, information disclosure, or data tampering.
NVIDIA vGPU software for Linux-style hypervisors contains a vulnerability in the Virtual GPU Manager, where a malicious guest could cause stack buffer overflow. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, or data tampering.
The native Bluetooth stack in the Linux Kernel (BlueZ), starting at the Linux kernel version 2.6.32 and up to and including 4.13.1, are vulnerable to a stack overflow vulnerability in the processing of L2CAP configuration responses resulting in Remote code execution in kernel space.
NVIDIA DCGM contains a vulnerability in nvhostengine, where a network user can cause detection of error conditions without action, which may lead to limited code execution, some denial of service, escalation of privileges, and limited impacts to both data confidentiality and integrity.
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin and the host driver kernel module, in which the potential exists to write to a memory location that is outside the intended boundary of the frame buffer memory allocated to guest operating systems, which may lead to denial of service or information disclosure. This affects vGPU version 8.x (prior to 8.5), version 10.x (prior to 10.4) and version 11.0.
A Memory Corruption Vulnerability exists in NVIDIA Graphics Drivers 29549 due to an unknown function in the file proc/driver/nvidia/registry.
A heap buffer overflow was discovered in the device control ioctl in the Linux driver for Nvidia graphics cards, which may allow an attacker to overflow 49 bytes. This issue was fixed in version 295.53.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer handler, where an out-of-bounds write can lead to denial of service and data tampering.
Bootloader contains a vulnerability in NVIDIA MB2 where potential heap overflow might cause corruption of the heap metadata, which might lead to arbitrary code execution, denial of service, and information disclosure during secure boot.
Bootloader contains a vulnerability in NVIDIA TegraBoot where a potential heap overflow might allow an attacker to control all the RAM after the heap block, leading to denial of service or code execution.
An issue was discovered in Oniguruma 6.2.0, as used in Oniguruma-mod in Ruby through 2.4.1 and mbstring in PHP through 7.1.5. A heap out-of-bounds write or read occurs in next_state_val() during regular expression compilation. Octal numbers larger than 0xff are not handled correctly in fetch_token() and fetch_token_in_cc(). A malformed regular expression containing an octal number in the form of '\700' would produce an invalid code point value larger than 0xff in next_state_val(), resulting in an out-of-bounds write memory corruption.
An issue was discovered in Oniguruma 6.2.0, as used in Oniguruma-mod in Ruby through 2.4.1 and mbstring in PHP through 7.1.5. A heap out-of-bounds write occurs in bitset_set_range() during regular expression compilation due to an uninitialized variable from an incorrect state transition. An incorrect state transition in parse_char_class() could create an execution path that leaves a critical local variable uninitialized until it's used as an index, resulting in an out-of-bounds write memory corruption.
An issue was discovered in Foxit Reader and PhantomPDF before 9.6. It has an out-of-bounds write when Internet Explorer is used.
Tenda AC18 V15.03.05.19 was discovered to contain a stack overflow via the devName parameter in the formSetDeviceName function.
There is a remote stack-based buffer overflow (SEH) in register.ghp in EFS Software Easy Chat Server versions 2.0 to 3.1. By sending an overly long username string to registresult.htm for registering the user, an attacker may be able to execute arbitrary code.
Quick Heal Internet Security 10.1.0.316, Quick Heal Total Security 10.1.0.316, and Quick Heal AntiVirus Pro 10.1.0.316 are vulnerable to Memory Corruption while parsing a malformed Mach-O file.
If an out-of-memory condition occurs at a specific point using allocations in the probabilistic heap checker, an assertion could have been triggered, and in rarer situations, memory corruption could have occurred. This vulnerability affects Firefox < 127.
The zend_string_extend function in Zend/zend_string.h in PHP through 7.1.5 does not prevent changes to string objects that result in a negative length, which allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact by leveraging a script's use of .= with a long string.
Tenda AC18 V15.03.05.19 was discovered to contain a stack overflow via the limitSpeedUp parameter in the formSetClientState function.
Memory safety bugs present in Firefox 126. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 127.
Tenda AC18 V15.03.05.19 was discovered to contain a stack overflow via the startIP parameter in the formSetPPTPServer function.
Tenda AC Series Router AC11_V02.03.01.104_CN was discovered to contain a stack buffer overflow in the wanBasicCfg module. This vulnerability allows attackers to cause a Denial of Service (DoS) via crafted overflow data.
Quick Heal Internet Security 10.1.0.316, Quick Heal Total Security 10.1.0.316, and Quick Heal AntiVirus Pro 10.1.0.316 are vulnerable to Out of Bounds Write on a Heap Buffer due to improper validation of dwCompressionSize of Microsoft WIM Header WIMHEADER_V1_PACKED. This vulnerability can be exploited to gain Remote Code Execution as well as Privilege Escalation.
Netgear WNR854T 1.5.2 (North America) contains a stack-based buffer overflow vulnerability in the SetDefaultConnectionService function due to an unconstrained use of sscanf. The vulnerability allows for control of the program counter and can be utilized to achieve arbitrary code execution.
A carefully crafted request body can cause a buffer overflow in the mod_lua multipart parser (r:parsebody() called from Lua scripts). The Apache httpd team is not aware of an exploit for the vulnerabilty though it might be possible to craft one. This issue affects Apache HTTP Server 2.4.51 and earlier.
Quick Heal Internet Security 10.1.0.316, Quick Heal Total Security 10.1.0.316, and Quick Heal AntiVirus Pro 10.1.0.316 are vulnerable to Memory Corruption while parsing a malformed Mach-O file.
TOTOLINK X2000R Gh v1.0.0-B20230221.0948.web was discovered to contain a stack overflow via the function formPortFw.
OpenImageIO v3.1.0.0dev was discovered to contain a heap overflow via the component /OpenImageIO/fmath.h.
An attacker sending specially crafted data packets to the Mobile Device Server can cause memory corruption which could result to a Denial of Service (DoS) or code execution.
Dnsmasq 2.86 has a heap-based buffer overflow in print_mac (called from log_packet and dhcp_reply). NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge.
Dnsmasq 2.86 has a heap-based buffer overflow in extract_name (called from answer_auth and FuzzAuth). NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge.
FreeType 2 before 2017-03-07 has an out-of-bounds write related to the TT_Get_MM_Var function in truetype/ttgxvar.c and the sfnt_init_face function in sfnt/sfobjs.c.
Tenda AC Series Router AC11_V02.03.01.104_CN was discovered to contain a stack buffer overflow in the PPPoE module. This vulnerability allows attackers to cause a Denial of Service (DoS) via crafted overflow data.
In FreeBSD 12.0-STABLE before r350648, 12.0-RELEASE before 12.0-RELEASE-p9, 11.3-STABLE before r350650, 11.3-RELEASE before 11.3-RELEASE-p2, and 11.2-RELEASE before 11.2-RELEASE-p13, the ICMPv6 input path incorrectly handles cases where an MLDv2 listener query packet is internally fragmented across multiple mbufs. A remote attacker may be able to cause an out-of-bounds read or write that may cause the kernel to attempt to access an unmapped page and subsequently panic.
An attacker sending specially crafted data packets to the Mobile Device Server can cause memory corruption which could result to a Denial of Service (DoS) or code execution.