RIOT-OS, an operating system that supports Internet of Things devices, contains a network stack with the ability to process 6LoWPAN frames. Prior to version 2022.10, an attacker can send a crafted frame to the device resulting in a type confusion between IPv6 extension headers and a UDP header. This occurs while encoding a 6LoWPAN IPHC header. The type confusion manifests in an out of bounds write in the packet buffer. The overflow can be used to corrupt other packets and the allocator metadata. Corrupting a pointer will easily lead to denial of service. While carefully manipulating the allocator metadata gives an attacker the possibility to write data to arbitrary locations and thus execute arbitrary code. Version 2022.10 fixes this issue. As a workaround, apply the patches manually.
RIOT-OS, an operating system that supports Internet of Things devices, contains a network stack with the ability to process 6LoWPAN frames. Prior to version 2022.10, an attacker can send a crafted frame to the device resulting in an out of bounds write in the packet buffer. The overflow can be used to corrupt other packets and the allocator metadata. Corrupting a pointer will easily lead to denial of service. While carefully manipulating the allocator metadata gives an attacker the possibility to write data to arbitrary locations and thus execute arbitrary code. Version 2022.10 fixes this issue. As a workaround, disable support for fragmented IP datagrams or apply the patches manually.
RIOT RIOT-OS version after commit 7af03ab624db0412c727eed9ab7630a5282e2fd3 contains a Buffer Overflow vulnerability in sock_dns, an implementation of the DNS protocol utilizing the RIOT sock API that can result in Remote code executing. This attack appears to be exploitable via network connectivity.
RIOT 2020.04 has a buffer overflow in the base64 decoder. The decoding function base64_decode() uses an output buffer estimation function to compute the required buffer capacity and validate against the provided buffer size. The base64_estimate_decode_size() function calculates the expected decoded size with an arithmetic round-off error and does not take into account possible padding bytes. Due to this underestimation, it may be possible to craft base64 input that causes a buffer overflow.
RIOT is a real-time multi-threading operating system that supports a range of devices that are typically 8-bit, 16-bit and 32-bit microcontrollers. The size check in the `gcoap_dns_server_proxy_get()` function contains a small typo that may lead to a buffer overflow in the subsequent `strcpy()`. In detail, the length of the `_uri` string is checked instead of the length of the `_proxy` string. The `_gcoap_forward_proxy_copy_options()` function does not implement an explicit size check before copying data to the `cep->req_etag` buffer that is `COAP_ETAG_LENGTH_MAX` bytes long. If an attacker can craft input so that `optlen` becomes larger than `COAP_ETAG_LENGTH_MAX`, they can cause a buffer overflow. If the input above is attacker-controlled and crosses a security boundary, the impact of the buffer overflow vulnerabilities could range from denial of service to arbitrary code execution. This issue has yet to be patched. Users are advised to add manual bounds checking.
RIOT-OS 2020.01 contains a buffer overflow vulnerability in /sys/net/gnrc/routing/rpl/gnrc_rpl_control_messages.c.
RIOT-OS 2021.01 contains a buffer overflow vulnerability in /sys/net/gnrc/routing/rpl/gnrc_rpl_control_messages.c through the _parse_options() function.
RIOT OS version 2020.01.1 is vulnerable to integer wrap-around in its implementation of calloc function, which can lead to arbitrary memory allocation, resulting in unexpected behavior such as a crash or a remote code injection/execution.
RIOT-OS 2021.01 contains a buffer overflow vulnerability in sys/net/gnrc/routing/rpl/gnrc_rpl_validation.c through the gnrc_rpl_validation_options() function.
RIOT-OS, an operating system that supports Internet of Things devices, contains a network stack with the ability to process 6LoWPAN frames. An attacker can send a crafted frame to the device resulting in a large out of bounds write beyond the packet buffer. The write will create a hard fault exception after reaching the last page of RAM. The hard fault is not handled and the system will be stuck until reset. Thus the impact is denial of service. Version 2022.10 fixes this issue. As a workaround, apply the patch manually.
RIOT-OS, an operating system that supports Internet of Things devices, contains a network stack with the ability to process 6LoWPAN frames. Prior to version 2022.10, an attacker can send a crafted frame to the device resulting in a large out of bounds write beyond the packet buffer. The write will create a hard fault exception after reaching the last page of RAM. The hard fault is not handled and the system will be stuck until reset, thus the impact is denial of service. Version 2022.10 fixes this issue. As a workaround, disable support for fragmented IP datagrams or apply the patches manually.
RIOT-OS, an operating system for Internet of Things (IoT) devices, contains a network stack with the ability to process 6LoWPAN frames. Prior to version 2023.04, an attacker can send a crafted frame to the device resulting in an integer underflow and out of bounds access in the packet buffer. Triggering the access at the right time will corrupt other packets or the allocator metadata. Corrupting a pointer will lead to denial of service. This issue is fixed in version 2023.04. As a workaround, disable SRH in the network stack.
An issue was discovered in Oniguruma 6.2.0, as used in Oniguruma-mod in Ruby through 2.4.1 and mbstring in PHP through 7.1.5. A heap out-of-bounds write or read occurs in next_state_val() during regular expression compilation. Octal numbers larger than 0xff are not handled correctly in fetch_token() and fetch_token_in_cc(). A malformed regular expression containing an octal number in the form of '\700' would produce an invalid code point value larger than 0xff in next_state_val(), resulting in an out-of-bounds write memory corruption.
An issue was discovered in Oniguruma 6.2.0, as used in Oniguruma-mod in Ruby through 2.4.1 and mbstring in PHP through 7.1.5. A heap out-of-bounds write occurs in bitset_set_range() during regular expression compilation due to an uninitialized variable from an incorrect state transition. An incorrect state transition in parse_char_class() could create an execution path that leaves a critical local variable uninitialized until it's used as an index, resulting in an out-of-bounds write memory corruption.
An issue was discovered in Foxit Reader and PhantomPDF before 9.6. It has an out-of-bounds write when Internet Explorer is used.
Tenda AC18 V15.03.05.19 was discovered to contain a stack overflow via the devName parameter in the formSetDeviceName function.
There is a remote stack-based buffer overflow (SEH) in register.ghp in EFS Software Easy Chat Server versions 2.0 to 3.1. By sending an overly long username string to registresult.htm for registering the user, an attacker may be able to execute arbitrary code.
Quick Heal Internet Security 10.1.0.316, Quick Heal Total Security 10.1.0.316, and Quick Heal AntiVirus Pro 10.1.0.316 are vulnerable to Memory Corruption while parsing a malformed Mach-O file.
If an out-of-memory condition occurs at a specific point using allocations in the probabilistic heap checker, an assertion could have been triggered, and in rarer situations, memory corruption could have occurred. This vulnerability affects Firefox < 127.
The zend_string_extend function in Zend/zend_string.h in PHP through 7.1.5 does not prevent changes to string objects that result in a negative length, which allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact by leveraging a script's use of .= with a long string.
Tenda AC18 V15.03.05.19 was discovered to contain a stack overflow via the limitSpeedUp parameter in the formSetClientState function.
Memory safety bugs present in Firefox 126. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 127.
Tenda AC18 V15.03.05.19 was discovered to contain a stack overflow via the startIP parameter in the formSetPPTPServer function.
Tenda AC Series Router AC11_V02.03.01.104_CN was discovered to contain a stack buffer overflow in the wanBasicCfg module. This vulnerability allows attackers to cause a Denial of Service (DoS) via crafted overflow data.
Quick Heal Internet Security 10.1.0.316, Quick Heal Total Security 10.1.0.316, and Quick Heal AntiVirus Pro 10.1.0.316 are vulnerable to Out of Bounds Write on a Heap Buffer due to improper validation of dwCompressionSize of Microsoft WIM Header WIMHEADER_V1_PACKED. This vulnerability can be exploited to gain Remote Code Execution as well as Privilege Escalation.
An issue, also known as DW201703-006, was discovered in libdwarf 2017-03-21. A heap-based buffer over-read in dwarf_formsdata() is due to a failure to check a pointer for being in bounds (in a few places in this function) and a failure in a check in dwarf_attr_list().
A carefully crafted request body can cause a buffer overflow in the mod_lua multipart parser (r:parsebody() called from Lua scripts). The Apache httpd team is not aware of an exploit for the vulnerabilty though it might be possible to craft one. This issue affects Apache HTTP Server 2.4.51 and earlier.
An issue was discovered on D-Link DCS-1100 and DCS-1130 devices. The binary rtspd in /sbin folder of the device handles all the rtsp connections received by the device. It seems that the binary performs a memcpy operation at address 0x00011E34 with the value sent in the "Authorization: Basic" RTSP header and stores it on the stack. The number of bytes to be copied are calculated based on the length of the string sent in the RTSP header by the client. As a result, memcpy copies more data then it can hold on stack and this results in corrupting the registers for the caller function sub_F6CC which results in memory corruption. The severity of this attack is enlarged by the fact that the same value is then copied on the stack in the function 0x00011378 and this allows to overflow the buffer allocated and thus control the PC register which will result in arbitrary code execution on the device.
Quick Heal Internet Security 10.1.0.316, Quick Heal Total Security 10.1.0.316, and Quick Heal AntiVirus Pro 10.1.0.316 are vulnerable to Memory Corruption while parsing a malformed Mach-O file.
TOTOLINK X2000R Gh v1.0.0-B20230221.0948.web was discovered to contain a stack overflow via the function formPortFw.
In FreeBSD 12.1-STABLE before r356035, 12.1-RELEASE before 12.1-RELEASE-p4, 11.3-STABLE before r356036, and 11.3-RELEASE before 11.3-RELEASE-p8, incomplete packet data validation may result in accessing out-of-bounds memory leading to a kernel panic or other unpredictable results.
OpenImageIO v3.1.0.0dev was discovered to contain a heap overflow via the component /OpenImageIO/fmath.h.
An attacker sending specially crafted data packets to the Mobile Device Server can cause memory corruption which could result to a Denial of Service (DoS) or code execution.
An issue was discovered in adns before 1.5.2. pap_mailbox822 does not properly check st from adns__findlabel_next. Without this, an uninitialised stack value can be used as the first label length. Depending on the circumstances, an attacker might be able to trick adns into crashing the calling program, leaking aspects of the contents of some of its memory, causing it to allocate lots of memory, or perhaps overrunning a buffer. This is only possible with applications which make non-raw queries for SOA or RP records.
Dnsmasq 2.86 has a heap-based buffer overflow in print_mac (called from log_packet and dhcp_reply). NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge.
Dnsmasq 2.86 has a heap-based buffer overflow in extract_name (called from answer_auth and FuzzAuth). NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge.
FreeType 2 before 2017-03-07 has an out-of-bounds write related to the TT_Get_MM_Var function in truetype/ttgxvar.c and the sfnt_init_face function in sfnt/sfobjs.c.
Tenda AC Series Router AC11_V02.03.01.104_CN was discovered to contain a stack buffer overflow in the PPPoE module. This vulnerability allows attackers to cause a Denial of Service (DoS) via crafted overflow data.
In FreeBSD 12.0-STABLE before r350648, 12.0-RELEASE before 12.0-RELEASE-p9, 11.3-STABLE before r350650, 11.3-RELEASE before 11.3-RELEASE-p2, and 11.2-RELEASE before 11.2-RELEASE-p13, the ICMPv6 input path incorrectly handles cases where an MLDv2 listener query packet is internally fragmented across multiple mbufs. A remote attacker may be able to cause an out-of-bounds read or write that may cause the kernel to attempt to access an unmapped page and subsequently panic.
An attacker sending specially crafted data packets to the Mobile Device Server can cause memory corruption which could result to a Denial of Service (DoS) or code execution.
Tenda AC Series Router AC11_V02.03.01.104_CN was discovered to contain a stack buffer overflow in the wifiTime module. This vulnerability allows attackers to cause a Denial of Service (DoS) via crafted overflow data.
An attacker sending specially crafted data packets to the Mobile Device Server can cause memory corruption which could result to a Denial of Service (DoS) or code execution.
Stack-based Buffer Overflow vulnerability in Shenzhen Tenda Technology Co Tenda AC6V2 (setDoubleL2tpConfig->guest_ip_check(overflow arg: mask) modules) allows Overflow Buffers.This issue affects Tenda AC6V2: through 15.03.06.50
FreeType 2 before 2017-03-08 has an out-of-bounds write caused by a heap-based buffer overflow related to the TT_Get_MM_Var function in truetype/ttgxvar.c and the sfnt_init_face function in sfnt/sfobjs.c.
An unauthenticated attacker can trigger a stack based buffer overflow in the DP Service (TCP port 3500). This vulnerability has been resolved in firmware version 2.800.0000000.8.R.20241111.
Tenda AC Series Router AC11_V02.03.01.104_CN was discovered to contain a stack buffer overflow in the wifiBasicCfg module. This vulnerability allows attackers to cause a Denial of Service (DoS) via crafted overflow data.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects R6260 before 1.1.0.76, R6800 before 1.2.0.62, R6700v2 before 1.2.0.62, R6900v2 before 1.2.0.62, R7450 before 1.2.0.62, AC2100 before 1.2.0.62, AC2400 before 1.2.0.62, and AC2600 before 1.2.0.62.
Stack-based Buffer Overflow vulnerability in Shenzhen Tenda Technology Co Tenda AC6V2 (setDoublePppoeConfig->guest_ip_check(overflow arg: mask) modules) allows Overflow Buffers.This issue affects Tenda AC6V2: through 15.03.06.50
An issue was discovered in the nix crate 0.16.0 and later before 0.20.2, 0.21.x before 0.21.2, and 0.22.x before 0.22.2 for Rust. unistd::getgrouplist has an out-of-bounds write if a user is in more than 16 /etc/groups groups.
Stack-based Buffer Overflow vulnerability in Shenzhen Tenda Technology Co Tenda AC6V2 (fromAdvSetLanip(overflow arg:lanMask) modules) allows Overflow Buffers.This issue affects Tenda AC6V2: through 15.03.06.50