GQUIC dissector crash in Wireshark 4.0.0 to 4.0.4 and 3.6.0 to 3.6.12 allows denial of service via packet injection or crafted capture file
LISP dissector large loop in Wireshark 4.0.0 to 4.0.4 and 3.6.0 to 3.6.12 allows denial of service via packet injection or crafted capture file
Memory leak in the NFS dissector in Wireshark 4.0.0 to 4.0.2 and 3.6.0 to 3.6.10 and allows denial of service via packet injection or crafted capture file
Due to failure in validating the length provided by an attacker-crafted MSMMS packet, Wireshark version 4.0.5 and prior, in an unusual configuration, is susceptible to a heap-based buffer overflow, and possibly code execution in the context of the process running Wireshark
Due to failure in validating the length provided by an attacker-crafted IEEE-C37.118 packet, Wireshark version 4.0.5 and prior, by default, is susceptible to a heap-based buffer overflow, and possibly code execution in the context of the process running Wireshark.
Crash in the EAP dissector in Wireshark 4.0.0 to 4.0.2 allows denial of service via packet injection or crafted capture file
NetScaler file parser crash in Wireshark 4.0.0 to 4.0.5 and 3.6.0 to 3.6.13 allows denial of service via crafted capture file
Excessive loops in multiple dissectors in Wireshark 4.0.0 to 4.0.2 and 3.6.0 to 3.6.10 and allows denial of service via packet injection or crafted capture file
Due to failure in validating the length provided by an attacker-crafted RTPS packet, Wireshark version 4.0.5 and prior, by default, is susceptible to a heap-based buffer overflow, and possibly code execution in the context of the process running Wireshark.
Dissection engine bug in Wireshark 4.0.0 to 4.0.2 and 3.6.0 to 3.6.10 and allows denial of service via packet injection or crafted capture file
GNW dissector crash in Wireshark 4.0.0 to 4.0.2 and 3.6.0 to 3.6.10 and allows denial of service via packet injection or crafted capture file
iSCSI dissector crash in Wireshark 4.0.0 to 4.0.2 and 3.6.0 to 3.6.10 and allows denial of service via packet injection or crafted capture file
BLF file parser crash in Wireshark 4.0.0 to 4.0.5 and 3.6.0 to 3.6.13 allows denial of service via crafted capture file
SSH dissector crash in Wireshark 4.0.0 to 4.0.10 allows denial of service via packet injection or crafted capture file
BT SDP dissector memory leak in Wireshark 4.0.0 to 4.0.7 and 3.6.0 to 3.6.15 allows denial of service via packet injection or crafted capture file
Infinite loops in the BPv6, OpenFlow, and Kafka protocol dissectors in Wireshark 4.0.0 to 4.0.1 and 3.6.0 to 3.6.9 allows denial of service via packet injection or crafted capture file
VMS TCPIPtrace file parser crash in Wireshark 4.0.0 to 4.0.5 and 3.6.0 to 3.6.13 allows denial of service via crafted capture file
Candump log parser crash in Wireshark 4.0.0 to 4.0.5 and 3.6.0 to 3.6.13 allows denial of service via crafted capture file
CBOR dissector crash in Wireshark 4.0.0 to 4.0.6 allows denial of service via packet injection or crafted capture file
BT SDP dissector infinite loop in Wireshark 4.0.0 to 4.0.7 and 3.6.0 to 3.6.15 allows denial of service via packet injection or crafted capture file
Large loops in multiple protocol dissectors in Wireshark 3.6.0 to 3.6.1 and 3.4.0 to 3.4.11 allow denial of service via packet injection or crafted capture file
Due to a failure in validating the length provided by an attacker-crafted CP2179 packet, Wireshark versions 2.0.0 through 4.0.7 is susceptible to a divide by zero allowing for a denial of service attack.
iSCSI dissector crash in Wireshark 4.0.0 to 4.0.6 allows denial of service via packet injection or crafted capture file
Kafka dissector crash in Wireshark 4.0.0 to 4.0.6 and 3.6.0 to 3.6.14 allows denial of service via packet injection or crafted capture file
XRA dissector infinite loop in Wireshark 4.0.0 to 4.0.5 and 3.6.0 to 3.6.13 allows denial of service via packet injection or crafted capture file
BLF file parser crash in Wireshark 4.0.0 to 4.0.5 and 3.6.0 to 3.6.13 allows denial of service via crafted capture file
In Wireshark 3.2.0 to 3.2.5, the Kafka protocol dissector could crash. This was addressed in epan/dissectors/packet-kafka.c by avoiding a double free during LZ4 decompression.
Crash in USB HID dissector in Wireshark 3.4.0 to 3.4.2 allows denial of service via packet injection or crafted capture file
Excessive memory consumption in MS-WSP dissector in Wireshark 3.4.0 to 3.4.4 and 3.2.0 to 3.2.12 allows denial of service via packet injection or crafted capture file
In Wireshark 2.2.0 to 2.2.6 and 2.0.0 to 2.0.12, the openSAFETY dissector could crash or exhaust system memory. This was addressed in epan/dissectors/packet-opensafety.c by checking for a negative length.
In Wireshark 3.2.0 to 3.2.7, the GQUIC dissector could crash. This was addressed in epan/dissectors/packet-gquic.c by correcting the implementation of offset advancement.
OctoRPKI tries to load the entire contents of a repository in memory, and in the case of a GZIP bomb, unzip it in memory, making it possible to create a repository that makes OctoRPKI run out of memory (and thus crash).
If a MIME email combines OpenPGP and OpenPGP MIME data in a certain way Thunderbird repeatedly attempts to process and display the message, which could cause Thunderbird's user interface to lock up and no longer respond to the user's actions. An attacker could send a crafted message with this structure to attempt a DoS attack. This vulnerability affects Thunderbird < 102.8.
A security vulnerability in HPE IceWall Agent products could be exploited remotely to cause a denial of service.
A vulnerability was found in docconv up to 1.2.0 and classified as problematic. This issue affects the function ConvertDocx/ConvertODT/ConvertPages/ConvertXML/XMLToText. The manipulation leads to uncontrolled memory allocation. The attack may be initiated remotely. Upgrading to version 1.2.1 is able to address this issue. The name of the patch is 42bcff666855ab978e67a9041d0cdea552f20301. It is recommended to upgrade the affected component. The associated identifier of this vulnerability is VDB-216779.
Helm is a package manager for Charts for Kubernetes. Prior to version 3.18.5, it is possible to craft a JSON Schema file in a manner which could cause Helm to use all available memory and have an out of memory (OOM) termination. This issue has been resolved in Helm 3.18.5. A workaround involves ensuring all Helm charts that are being loaded into Helm do not have any reference of $ref pointing to /dev/zero.
Helm is a tool for managing Charts. A chart archive file can be crafted in a manner where it expands to be significantly larger uncompressed than compressed (e.g., >800x difference). When Helm loads this specially crafted chart, memory can be exhausted causing the application to terminate. This issue has been resolved in Helm v3.17.3.
When calling `JS::CheckRegExpSyntax` a Syntax Error could have been set which would end in calling `convertToRuntimeErrorAndClear`. A path in the function could attempt to allocate memory when none is available which would have caused a newly created Out of Memory exception to be mishandled as a Syntax Error. This vulnerability affects Firefox < 117, Firefox ESR < 115.2, and Thunderbird < 115.2.
An allocation-size-too-big error in the parseSWF_DEFINEBINARYDATA function of libming v0.48 allows attackers to cause a Denial of Service (DoS) via supplying a crafted SWF file.
Net::IMAP implements Internet Message Access Protocol (IMAP) client functionality in Ruby. Starting in version 0.3.2 and prior to versions 0.3.8, 0.4.19, and 0.5.6, there is a possibility for denial of service by memory exhaustion in `net-imap`'s response parser. At any time while the client is connected, a malicious server can send can send highly compressed `uid-set` data which is automatically read by the client's receiver thread. The response parser uses `Range#to_a` to convert the `uid-set` data into arrays of integers, with no limitation on the expanded size of the ranges. Versions 0.3.8, 0.4.19, 0.5.6, and higher fix this issue. Additional details for proper configuration of fixed versions and backward compatibility are available in the GitHub Security Advisory.
Synapse is a Matrix reference homeserver written in python (pypi package matrix-synapse). Matrix is an ecosystem for open federated Instant Messaging and VoIP. In Synapse before version 1.25.0, a malicious homeserver could redirect requests to their .well-known file to a large file. This can lead to a denial of service attack where homeservers will consume significantly more resources when requesting the .well-known file of a malicious homeserver. This affects any server which accepts federation requests from untrusted servers. Issue is resolved in version 1.25.0. As a workaround the `federation_domain_whitelist` setting can be used to restrict the homeservers communicated with over federation.
An issue was discovered in GitLab EE affecting all versions starting with 12.3 before 17.7.7, 17.8 prior to 17.8.5, and 17.9 prior to 17.9.2. A vulnerability in certain GitLab instances could allow an attacker to cause a denial of service condition by manipulating specific API inputs.
An issue was discovered in signotec signoPAD-API/Web (formerly Websocket Pad Server) before 3.1.1 on Windows. It is possible to perform a Denial of Service attack because the application doesn't limit the number of opened WebSocket sockets. If a victim visits an attacker-controlled website, this vulnerability can be exploited.
PNGDec commit 8abf6be was discovered to contain a memory allocation problem via asan_malloc_linux.cpp.
The issue was addressed with improved checks. This issue is fixed in iPadOS 17.7.4, macOS Ventura 13.7.3, macOS Sonoma 14.7.3, visionOS 2.2, tvOS 18.2, watchOS 11.2, iOS 18.2 and iPadOS 18.2, macOS Sequoia 15.2. Processing web content may lead to a denial-of-service.
Bitcoin-Qt in Bitcoin Core before 0.20.0 allows remote attackers to cause a denial of service (memory consumption and application crash) via a BIP21 r parameter for a URL that has a large file.
curl < 7.84.0 supports "chained" HTTP compression algorithms, meaning that a serverresponse can be compressed multiple times and potentially with different algorithms. The number of acceptable "links" in this "decompression chain" was unbounded, allowing a malicious server to insert a virtually unlimited number of compression steps.The use of such a decompression chain could result in a "malloc bomb", makingcurl end up spending enormous amounts of allocated heap memory, or trying toand returning out of memory errors.
The TIFF decoder does not place a limit on the size of compressed tile data. A maliciously-crafted image can exploit this to cause a small image (both in terms of pixel width/height, and encoded size) to make the decoder decode large amounts of compressed data, consuming excessive memory and CPU.
Discourse is the an open source discussion platform. In affected versions an email activation route can be abused to send mass spam emails. A fix has been included in the latest stable, beta and tests-passed versions of Discourse which rate limits emails. Users are advised to upgrade. Users unable to upgrade should manually rate limit email.
Issue summary: Processing some specially crafted ASN.1 object identifiers or data containing them may be very slow. Impact summary: Applications that use OBJ_obj2txt() directly, or use any of the OpenSSL subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS with no message size limit may experience notable to very long delays when processing those messages, which may lead to a Denial of Service. An OBJECT IDENTIFIER is composed of a series of numbers - sub-identifiers - most of which have no size limit. OBJ_obj2txt() may be used to translate an ASN.1 OBJECT IDENTIFIER given in DER encoding form (using the OpenSSL type ASN1_OBJECT) to its canonical numeric text form, which are the sub-identifiers of the OBJECT IDENTIFIER in decimal form, separated by periods. When one of the sub-identifiers in the OBJECT IDENTIFIER is very large (these are sizes that are seen as absurdly large, taking up tens or hundreds of KiBs), the translation to a decimal number in text may take a very long time. The time complexity is O(n^2) with 'n' being the size of the sub-identifiers in bytes (*). With OpenSSL 3.0, support to fetch cryptographic algorithms using names / identifiers in string form was introduced. This includes using OBJECT IDENTIFIERs in canonical numeric text form as identifiers for fetching algorithms. Such OBJECT IDENTIFIERs may be received through the ASN.1 structure AlgorithmIdentifier, which is commonly used in multiple protocols to specify what cryptographic algorithm should be used to sign or verify, encrypt or decrypt, or digest passed data. Applications that call OBJ_obj2txt() directly with untrusted data are affected, with any version of OpenSSL. If the use is for the mere purpose of display, the severity is considered low. In OpenSSL 3.0 and newer, this affects the subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS. It also impacts anything that processes X.509 certificates, including simple things like verifying its signature. The impact on TLS is relatively low, because all versions of OpenSSL have a 100KiB limit on the peer's certificate chain. Additionally, this only impacts clients, or servers that have explicitly enabled client authentication. In OpenSSL 1.1.1 and 1.0.2, this only affects displaying diverse objects, such as X.509 certificates. This is assumed to not happen in such a way that it would cause a Denial of Service, so these versions are considered not affected by this issue in such a way that it would be cause for concern, and the severity is therefore considered low.