IBM Aspera Console 3.4.0 through 3.4.4 allows passwords to be reused when a new user logs into the system.
TXOne StellarOne has an improper access control privilege escalation vulnerability in every version before V2.0.1160 that could allow a malicious, falsely authenticated user to escalate his privileges to administrator level. With these privileges, an attacker could perform actions they are not authorized to. Please note: an attacker must first obtain a low-privileged authenticated user's profile on the target system in order to exploit this vulnerability.
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix invalid memory access while processing fragmented packets The monitor ring and the reo reinject ring share the same ring mask index. When the driver receives an interrupt for the reo reinject ring, the monitor ring is also processed, leading to invalid memory access. Since monitor support is not yet enabled in ath12k, the ring mask for the monitor ring should be removed. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.1.1-00209-QCAHKSWPL_SILICONZ-1
IBM InfoSphere Guardium 8.0, 8.01, and 8.2 is vulnerable to SQL injection. A remote authenticated attacker could send specially-crafted SQL statements to multiple scripts, which could allow the attacker to view, add, modify or delete information in the back-end database. IBM X-Force ID: 78282.
In the Linux kernel, the following vulnerability has been resolved: smack: tcp: ipv4, fix incorrect labeling Currently, Smack mirrors the label of incoming tcp/ipv4 connections: when a label 'foo' connects to a label 'bar' with tcp/ipv4, 'foo' always gets 'foo' in returned ipv4 packets. So, 1) returned packets are incorrectly labeled ('foo' instead of 'bar') 2) 'bar' can write to 'foo' without being authorized to write. Here is a scenario how to see this: * Take two machines, let's call them C and S, with active Smack in the default state (no settings, no rules, no labeled hosts, only builtin labels) * At S, add Smack rule 'foo bar w' (labels 'foo' and 'bar' are instantiated at S at this moment) * At S, at label 'bar', launch a program that listens for incoming tcp/ipv4 connections * From C, at label 'foo', connect to the listener at S. (label 'foo' is instantiated at C at this moment) Connection succeedes and works. * Send some data in both directions. * Collect network traffic of this connection. All packets in both directions are labeled with the CIPSO of the label 'foo'. Hence, label 'bar' writes to 'foo' without being authorized, and even without ever being known at C. If anybody cares: exactly the same happens with DCCP. This behavior 1st manifested in release 2.6.29.4 (see Fixes below) and it looks unintentional. At least, no explanation was provided. I changed returned packes label into the 'bar', to bring it into line with the Smack documentation claims.
In the Linux kernel, the following vulnerability has been resolved: udp: do not accept non-tunnel GSO skbs landing in a tunnel When rx-udp-gro-forwarding is enabled UDP packets might be GROed when being forwarded. If such packets might land in a tunnel this can cause various issues and udp_gro_receive makes sure this isn't the case by looking for a matching socket. This is performed in udp4/6_gro_lookup_skb but only in the current netns. This is an issue with tunneled packets when the endpoint is in another netns. In such cases the packets will be GROed at the UDP level, which leads to various issues later on. The same thing can happen with rx-gro-list. We saw this with geneve packets being GROed at the UDP level. In such case gso_size is set; later the packet goes through the geneve rx path, the geneve header is pulled, the offset are adjusted and frag_list skbs are not adjusted with regard to geneve. When those skbs hit skb_fragment, it will misbehave. Different outcomes are possible depending on what the GROed skbs look like; from corrupted packets to kernel crashes. One example is a BUG_ON[1] triggered in skb_segment while processing the frag_list. Because gso_size is wrong (geneve header was pulled) skb_segment thinks there is "geneve header size" of data in frag_list, although it's in fact the next packet. The BUG_ON itself has nothing to do with the issue. This is only one of the potential issues. Looking up for a matching socket in udp_gro_receive is fragile: the lookup could be extended to all netns (not speaking about performances) but nothing prevents those packets from being modified in between and we could still not find a matching socket. It's OK to keep the current logic there as it should cover most cases but we also need to make sure we handle tunnel packets being GROed too early. This is done by extending the checks in udp_unexpected_gso: GSO packets lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits and landing in a tunnel must be segmented. [1] kernel BUG at net/core/skbuff.c:4408! RIP: 0010:skb_segment+0xd2a/0xf70 __udp_gso_segment+0xaa/0x560
In the Linux kernel, the following vulnerability has been resolved: kprobes: Fix possible use-after-free issue on kprobe registration When unloading a module, its state is changing MODULE_STATE_LIVE -> MODULE_STATE_GOING -> MODULE_STATE_UNFORMED. Each change will take a time. `is_module_text_address()` and `__module_text_address()` works with MODULE_STATE_LIVE and MODULE_STATE_GOING. If we use `is_module_text_address()` and `__module_text_address()` separately, there is a chance that the first one is succeeded but the next one is failed because module->state becomes MODULE_STATE_UNFORMED between those operations. In `check_kprobe_address_safe()`, if the second `__module_text_address()` is failed, that is ignored because it expected a kernel_text address. But it may have failed simply because module->state has been changed to MODULE_STATE_UNFORMED. In this case, arm_kprobe() will try to modify non-exist module text address (use-after-free). To fix this problem, we should not use separated `is_module_text_address()` and `__module_text_address()`, but use only `__module_text_address()` once and do `try_module_get(module)` which is only available with MODULE_STATE_LIVE.
IBM WebSphere Application Server 7.0, 8.0, 8.5, and 9.0 is vulnerable to a privilege escalation vulnerability when using the SAML Web Inbound Trust Association Interceptor (TAI). IBM X-Force ID: 202006.
IBM WebSphere Application Server 7.0, 8.0, 8.5, and 9.0 could allow a remote user to gain elevated privileges on the system. IBM X-Force ID: 201300.
A race condition was identified through which privilege escalation was possible in certain configurations.
IBM Sterling B2B Integrator Standard Edition 5.2.0.0 through 5.2.6.5_2, 6.0.0.0 through 6.0.3.2, and 6.1.0.0 could allow a remote attacker to execute arbitrary code on the system, caused by the deserialization of untrusted data. By sending specially crafted request, an attacker could exploit this vulnerability to execute arbitrary code with SYSTEM privileges. IBM X-Force ID: 172452.
VMware Workspace ONE Access 21.08, 20.10.0.1, and 20.10 contain an authentication bypass vulnerability. A malicious actor, who has successfully provided first-factor authentication, may be able to obtain second-factor authentication provided by VMware Verify.
IBM Maximo for Civil Infrastructure 7.6.2 includes executable functionality (such as a library) from a source that is outside of the intended control sphere. IBM X-Force ID: 196619.
IBM OpenPages with Watson 8.3 and 9.0 could allow remote attacker to bypass security restrictions, caused by insufficient authorization checks. By authenticating as an OpenPages user and using non-public APIs, an attacker could exploit this vulnerability to bypass security and gain unauthorized administrative access to the application. IBM X-Force ID: 264005.
A use-after-free vulnerability was found in drivers/nvme/target/tcp.c` in `nvmet_tcp_free_crypto` due to a logical bug in the NVMe/TCP subsystem in the Linux kernel. This issue may allow a malicious user to cause a use-after-free and double-free problem, which may permit remote code execution or lead to local privilege escalation.
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix dfs radar event locking The ath11k active pdevs are protected by RCU but the DFS radar event handling code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a read-side critical section. Mark the code in question as an RCU read-side critical section to avoid any potential use-after-free issues. Compile tested only.
IBM Security Guardium Key Lifecycle Manager 4.3 could allow an authenticated user to upload files of a dangerous file type. IBM X-Force ID: 271341.
An issue was discovered in slicer69 doas before 6.2 on certain platforms other than OpenBSD. A setusercontext(3) call with flags to change the UID, primary GID, and secondary GIDs was replaced (on certain platforms: Linux and possibly NetBSD) with a single setuid(2) call. This resulted in neither changing the group id nor initializing secondary group ids.
Rocket Software UniData versions prior to 8.2.4 build 3003 and UniVerse versions prior to 11.3.5 build 1001 or 12.2.1 build 2002 suffer from a stack-based buffer overflow, where a string is copied into a buffer using a memcpy-like function and a user-provided length. This requires a valid login to exploit.
IBM Db2 JDBC Driver for Db2 for Linux, UNIX and Windows 10.5, 11.1, and 11.5 could allow a remote authenticated attacker to execute arbitrary code on the system, caused by an unchecked class instantiation when providing plugin classes. By sending a specially crafted request using the named pluginClassName class, an attacker could exploit this vulnerability to execute arbitrary code on the system. IBM X-Force ID: 249516.
Rocket Software UniData versions prior to 8.2.4 build 3003 and UniVerse versions prior to 11.3.5 build 1001 or 12.2.1 build 2002 suffer from a buffer overflow in an API function, where a string is copied into a caller-provided buffer without checking the length. This requires a valid login to exploit.
Rocket Software UniData versions prior to 8.2.4 build 3003 and UniVerse versions prior to 11.3.5 build 1001 or 12.2.1 build 2002 suffer from a heap-based overflow vulnerability, where certain input can corrupt the heap and crash the forked process.
IBM QRadar SIEM 7.3 and 7.4 could allow a remote attacker to execute arbitrary commands on the system, caused by insecure deserialization of user-supplied content by the Java deserialization function. By sending a malicious serialized Java object, an attacker could exploit this vulnerability to execute arbitrary commands on the system. IBM X-Force ID: 176140.
IBM Db2 JDBC Driver for Db2 for Linux, UNIX and Windows 10.5, 11.1, and 11.5 could allow a remote authenticated attacker to execute arbitrary code on the system, caused by an unchecked logger injection. By sending a specially crafted request using the named traceFile property, an attacker could exploit this vulnerability to execute arbitrary code on the system. IBM X-Force ID: 249517.
IBM Security Guardium Key Lifecycle Manager 3.0, 3.0.1, 4.0, 4.1, and 4.1.1 allows the attacker to upload or transfer files of dangerous types that can be automatically processed within the product's environment. IBM X-Force ID: 247621.
IBM Security Guardium Key Lifecycle Manager 3.0, 3.0.1, 4.0, 4.1, and 4.1.1 allows the attacker to upload or transfer files of dangerous types that can be automatically processed within the product's environment. IBM X-Force ID: 247620.
VMware Cloud Director 10.0.x before 10.0.0.2, 9.7.0.x before 9.7.0.5, 9.5.0.x before 9.5.0.6, and 9.1.0.x before 9.1.0.4 do not properly handle input leading to a code injection vulnerability. An authenticated actor may be able to send malicious traffic to VMware Cloud Director which may lead to arbitrary remote code execution. This vulnerability can be exploited through the HTML5- and Flex-based UIs, the API Explorer interface and API access.
IBM Sterling B2B Integrator Standard Edition 5.2.0.0 through 5.2.6.5_2, 6.0.0.0 through 6.0.3.2, and 6.1.0.0 could allow an authenticated user to create a privileged account due to improper access controls. IBM X-Force ID: 188896.
IBM Security Guardium 11.2 could allow an authenticated user to gain root access due to improper access control. IBM X-Force ID: 192028.
IBM OpenPages with Watson 8.1 and 8.2 could allow an authenticated user to upload a file that could execute arbitrary code on the system. IBM X-Force ID: 207633.
IBM Security Identity Manager 7.0.2 could allow an authenticated user to bypass security and perform actions that they should not have access to. IBM X-Force ID: 200015
IBM Aspera Faspex 4.4.2 is vulnerable to an XML external entity injection (XXE) attack when processing XML data. A remote authenticated attacker could exploit this vulnerability to execute arbitrary commands. IBM X-Force ID: 249845.
IBM Security Guardium 11.5 could allow a user to take over another user's session due to insufficient session expiration. IBM X-Force ID: 243657.
IBM Security Guardium Key Lifecycle Manager 3.0, 3.0.1, 4.0, 4.1, and 4.1.1 could allow a remote authenticated attacker to execute arbitrary commands on the system by sending a specially crafted request. IBM X-Force ID: 247632.
An issue was discovered in ksmbd in the Linux kernel 5.15 through 5.19 before 5.19.2. There is a heap-based buffer overflow in set_ntacl_dacl, related to use of SMB2_QUERY_INFO_HE after a malformed SMB2_SET_INFO_HE command.
IBM webMethods Integration Server 10.5, 10.7, 10.11, and 10.15 is vulnerable to an XML external entity injection (XXE) attack when processing XML data. A remote authenticated attacker could exploit this vulnerability to execute arbitrary commands.
The Java Admin Console in Veritas NetBackup through 10.1 and related Veritas products on Linux and UNIX allows authenticated non-root users (that have been explicitly added to the auth.conf file) to execute arbitrary commands as root.
IBM Security Guardium 10.6 and 11.2 is vulnerable to SQL injection. A remote attacker could send specially crafted SQL statements, which could allow the attacker to view, add, modify or delete information in the back-end database. IBM X-Force ID: 191398.
A Local File Inclusion vulnerability has been found in Axiell Iguana CMS. Due to insufficient neutralisation of user input on the url parameter on the Proxy.type.php endpoint, external users are capable of accessing files on the server.
IBM Cloud Pak for Multicloud Management Monitoring 2.0 and 2.3 allows users without admin roles access to admin functions by specifying direct URL paths. IBM X-Force ID: 238210.
IBM Sterling B2B Integrator Standard Edition 6.1.0.0 through 6.1.1.1, and 6.1.2.0 could allow an authenticated user to perform actions they should not have access to due to improper permission controls. IBM X-Force ID: 235597.
IBM Cloud Pak for Security (CP4S) 1.10.0.0 through 1.10.2.0 could allow a remote authenticated attacker to execute arbitrary commands on the system by sending a specially crafted request. IBM X-Force ID: 233786.
Super Flexible Software GmbH & Co. KG Syncovery 9 for Linux v9.47x and below was discovered to contain multiple remote code execution (RCE) vulnerabilities via the Job_ExecuteBefore and Job_ExecuteAfter parameters at post_profilesettings.php.
Commvault Web Server has an unspecified vulnerability that can be exploited by a remote, authenticated attacker. According to the Commvault advisory: "Webservers can be compromised through bad actors creating and executing webshells." Fixed in version 11.36.46, 11.32.89, 11.28.141, and 11.20.217 for Windows and Linux platforms. This vulnerability was added to the CISA Known Exploited Vulnerabilities (KEV) Catalog on 2025-04-28.
IBM Sterling B2B Integrator Standard Edition 6.0.0.0 through 6.0.3.7 and 6.1.0.0 through 6.1.2.0 could allow an authenticated user to perform unauthorized actions due to improper access controls. IBM X-Force ID: 235533.
IBM Aspera Faspex 5.0.0 through 5.0.12 could allow an authenticated user to obtain sensitive information or perform unauthorized actions on behalf of another user due to client-side enforcement of server-side security.
IBM Aspera Faspex 5.0.0 through 5.0.12 could allow an authenticated user to obtain sensitive information or perform unauthorized actions on behalf of another user due to improper protection of assumed immutable data.
The (1) get_user and (2) put_user API functions in the Linux kernel before 3.5.5 on the v6k and v7 ARM platforms do not validate certain addresses, which allows attackers to read or modify the contents of arbitrary kernel memory locations via a crafted application, as exploited in the wild against Android devices in October and November 2013.
In drivers/usb/gadget/udc/udc-xilinx.c in the Linux kernel before 5.16.12, the endpoint index is not validated and might be manipulated by the host for out-of-array access.
The optional ShellUserGroupProvider in Apache NiFi 1.10.0 to 1.16.2 and Apache NiFi Registry 0.6.0 to 1.16.2 does not neutralize arguments for group resolution commands, allowing injection of operating system commands on Linux and macOS platforms. The ShellUserGroupProvider is not included in the default configuration. Command injection requires ShellUserGroupProvider to be one of the enabled User Group Providers in the Authorizers configuration. Command injection also requires an authenticated user with elevated privileges. Apache NiFi requires an authenticated user with authorization to modify access policies in order to execute the command. Apache NiFi Registry requires an authenticated user with authorization to read user groups in order to execute the command. The resolution removes command formatting based on user-provided arguments.