An allocation of resources without limits or throttling in Kibana can lead to a crash caused by a specially crafted payload to a number of inputs in Kibana UI. This can be carried out by users with read access to any feature in Kibana.
Allocation of Resources Without Limits or Throttling (CWE-770) in Kibana Fleet can lead to Excessive Allocation (CAPEC-130) via a specially crafted bulk retrieval request. This requires an attacker to have low-level privileges equivalent to the viewer role, which grants read access to agent policies. The crafted request can cause the application to perform redundant database retrieval operations that immediately consume memory until the server crashes and becomes unavailable to all users.
Improper Input Validation (CWE-20) in Kibana's Email Connector can allow an attacker to cause an Excessive Allocation (CAPEC-130) through a specially crafted email address parameter. This requires an attacker to have authenticated access with view-level privileges sufficient to execute connector actions. The application attempts to process specially crafted email format, resulting in complete service unavailability for all users until manual restart is performed.
Allocation of Resources Without Limits or Throttling (CWE-770) in Kibana Fleet can lead to Excessive Allocation (CAPEC-130) via a specially crafted request. This causes the application to perform redundant processing operations that continuously consume system resources until service degradation or complete unavailability occurs.
Allocation of Resources Without Limits or Throttling (CWE-770) in Kibana can allow a low-privileged authenticated user to cause Excessive Allocation (CAPEC-130) of computing resources and a denial of service (DoS) of the Kibana process via a crafted HTTP request.
Allocation of Resources Without Limits or Throttling (CWE-770) in Elasticsearch can allow a low-privileged authenticated user to cause Excessive Allocation (CAPEC-130) causing a persistent denial of service (OOM crash) via submission of oversized user settings data.
An allocation of resources without limits or throttling in Kibana can lead to a crash caused by a specially crafted request to /api/metrics/snapshot. This can be carried out by users with read access to the Observability Metrics or Logs features in Kibana.
An allocation of resources without limits or throttling in Kibana can lead to a crash caused by a specially crafted request to /api/log_entries/summary. This can be carried out by users with read access to the Observability-Logs feature in Kibana.
A flaw (CVE-2022-38900) was discovered in one of Kibana’s third party dependencies, that could allow an authenticated user to perform a request that crashes the Kibana server process.
An issue was discovered in Kibana where a user with Viewer role could cause a Kibana instance to crash by sending a large number of maliciously crafted requests to a specific endpoint.
A flaw was discovered in Elasticsearch, where processing a document in a deeply nested pipeline on an ingest node could cause the Elasticsearch node to crash.
A Denial of Service flaw was discovered in Elasticsearch. Using this vulnerability, an unauthenticated attacker could forcibly shut down an Elasticsearch node with a specifically formatted network request.
It was identified that malformed scripts used in the script processor of an Ingest Pipeline could cause an Elasticsearch node to crash when calling the Simulate Pipeline API.
Improper Validation of Array Index (CWE-129) exists in Metricbeat can allow an attacker to cause a Denial of Service through Input Data Manipulation (CAPEC-153) via specially crafted, malformed payloads sent to the Graphite server metricset or Zookeeper server metricset. Additionally, Improper Input Validation (CWE-20) exists in the Prometheus helper module that can allow an attacker to cause a Denial of Service through Input Data Manipulation (CAPEC-153) via specially crafted, malformed metric data.
A flaw was discovered in Elasticsearch, affecting the _search API that allowed a specially crafted query string to cause a Stack Overflow and ultimately a Denial of Service.
Logstash versions before 7.4.1 and 6.8.4 contain a denial of service flaw in the Logstash Beats input plugin. An unauthenticated user who is able to connect to the port the Logstash beats input could send a specially crafted network packet that would cause Logstash to stop responding.
Kibana versions before 7.12.1 contain a denial of service vulnerability was found in the webhook actions due to a lack of timeout or a limit on the request size. An attacker with permissions to create webhook actions could drain the Kibana host connection pool, making Kibana unavailable for all other users.
In Elasticsearch versions before 7.13.3 and 6.8.17 an uncontrolled recursion vulnerability that could lead to a denial of service attack was identified in the Elasticsearch Grok parser. A user with the ability to submit arbitrary queries to Elasticsearch could create a malicious Grok query that will crash the Elasticsearch node.
An issue has been identified with how Elasticsearch handled incoming requests on the HTTP layer. An unauthenticated user could force an Elasticsearch node to exit with an OutOfMemory error by sending a moderate number of malformed HTTP requests. The issue was identified by Elastic Engineering and we have no indication that the issue is known or that it is being exploited in the wild.
An issue was discovered in Elasticsearch, where a large recursion using the Well-KnownText formatted string with nested GeometryCollection objects could cause a stackoverflow.
An issue has been identified where a specially crafted request sent to an Observability API could cause the kibana server to crash. A successful attack requires a malicious user to have read permissions for Observability assigned to them.
Uncontrolled Resource Consumption in Elasticsearch while evaluating specifically crafted search templates with Mustache functions can lead to Denial of Service by causing the Elasticsearch node to crash.
A flaw was discovered in Elasticsearch, where a large recursion using the innerForbidCircularReferences function of the PatternBank class could cause the Elasticsearch node to crash. A successful attack requires a malicious user to have read_pipeline Elasticsearch cluster privilege assigned to them.
Allocation of resources without limits or throttling (CWE-770) allows an unauthenticated remote attacker to cause excessive allocation (CAPEC-130) of memory and CPU via the integration of malicious IPv4 fragments, leading to a degradation in Packetbeat.
Allocation of Resources Without Limits or Throttling (CWE-770) in Elasticsearch can allow an authenticated user with snapshot restore privileges to cause Excessive Allocation (CAPEC-130) of memory and a denial of service (DoS) via crafted HTTP request.
Werkzeug is a Web Server Gateway Interface web application library. Applications using `werkzeug.formparser.MultiPartParser` corresponding to a version of Werkzeug prior to 3.0.6 to parse `multipart/form-data` requests (e.g. all flask applications) are vulnerable to a relatively simple but effective resource exhaustion (denial of service) attack. A specifically crafted form submission request can cause the parser to allocate and block 3 to 8 times the upload size in main memory. There is no upper limit; a single upload at 1 Gbit/s can exhaust 32 GB of RAM in less than 60 seconds. Werkzeug version 3.0.6 fixes this issue.
An issue was discovered in MediaWiki through 1.38.1. The lemma length of a Wikibase lexeme is currently capped at a thousand characters. Unfortunately, this length is not validated, allowing much larger lexemes to be created, which introduces various denial-of-service attack vectors within the Wikibase and WikibaseLexeme extensions. This is related to Special:NewLexeme and Special:NewProperty.
A denial of service (DoS) vulnerability was found in OpenShift. This flaw allows attackers to exploit the GraphQL batching functionality. The vulnerability arises when multiple queries can be sent within a single request, enabling an attacker to submit a request containing thousands of aliases in one query. This issue causes excessive resource consumption, leading to application unavailability for legitimate users.
A vulnerability in the PROFINET stack implementation of the IndraDrive (all versions) of Bosch Rexroth allows an attacker to cause a denial of service, rendering the device unresponsive by sending arbitrary UDP messages.
A denial-of-service vulnerability in the Mattermost Playbooks plugin allows an authenticated user to crash the server via multiple large requests to one of the Playbooks API endpoints.
An Allocation of Resources Without Limits or Throttling vulnerability in the PFE management daemon (evo-pfemand) of Juniper Networks Junos OS Evolved allows an authenticated, network-based attacker to cause an FPC crash leading to a Denial of Service (DoS).When specific SNMP GET operations or specific low-priviledged CLI commands are executed, a GUID resource leak will occur, eventually leading to exhaustion and resulting in FPCs to hang. Affected FPCs need to be manually restarted to recover. GUID exhaustion will trigger a syslog message like one of the following: evo-pfemand[<pid>]: get_next_guid: Ran out of Guid Space ... evo-aftmand-zx[<pid>]: get_next_guid: Ran out of Guid Space ... The leak can be monitored by running the following command and taking note of the values in the rightmost column labeled Guids: user@host> show platform application-info allocations app evo-pfemand/evo-pfemand In case one or more of these values are constantly increasing the leak is happening. This issue affects Junos OS Evolved: * All versions before 21.4R2-EVO, * 22.1 versions before 22.1R2-EVO. Please note that this issue is similar to, but different from CVE-2024-47505 and CVE-2024-47508.
async-graphql is a GraphQL server library implemented in Rust. async-graphql before 7.0.10 does not limit the number of directives for a field. This can lead to Service Disruption, Resource Exhaustion, and User Experience Degradation. This vulnerability is fixed in 7.0.10.
An issue in the Instructor Appointment Availability module of eSoft Planner 3.24.08271-USA allows attackers to cause a Denial of Service (DoS) via a crafted POST request.
LibHTP is a security-aware parser for the HTTP protocol and the related bits and pieces. Prior to version 0.5.49, unbounded processing of HTTP request and response headers can lead to excessive CPU time and memory utilization, possibly leading to extreme slowdowns. This issue is addressed in 0.5.49.
An Environment (CWE-2) vulnerability exists in SoMachine Basic, all versions, and Modicon M221(all references, all versions prior to firmware V1.10.0.0) which could cause cycle time impact when flooding the M221 ethernet interface while the Ethernet/IP adapter is activated.
An allocation of resources without limits or throttling vulnerability [CWE-770] in FortiOS versions 7.4.0 through 7.4.4, versions 7.2.0 through 7.2.8, versions 7.0.0 through 7.0.15, and versions 6.4.0 through 6.4.15 may allow an unauthenticated remote user to consume all system memory via multiple large file uploads.
A allocation of resources without limits or throttling in Fortinet FortiSIEM 5.3 all versions, 5.4 all versions, 6.x all versions, 7.0 all versions, and 7.1.0 through 7.1.5 may allow an attacker to deny valid TLS traffic via consuming all allotted connections.
A memory allocation issue in vernemq v2.0.1 allows attackers to cause a Denial of Service (DoS) via excessive memory consumption.
ida64.dll in Hex-Rays IDA Pro through 8.4 crashes when there is a section that has many jumps linked, and the final jump corresponds to the payload from where the actual entry point will be invoked. NOTE: in many use cases, this is an inconvenience but not a security issue.
An issue in Open Networking Foundations sdran-in-a-box v.1.4.3 and onos-a1t v.0.2.3 allows a remote attacker to cause a denial of service via the onos-a1t component of the sdran-in-a-box, specifically the DeleteWatcher function.
Suricata is a network IDS, IPS and NSM engine. Prior to versions 8.0.3 and 7.0.14, crafted DCERPC traffic can cause Suricata to expand a buffer w/o limits, leading to memory exhaustion and the process getting killed. While reported for DCERPC over UDP, it is believed that DCERPC over TCP and SMB are also vulnerable. DCERPC/TCP in the default configuration should not be vulnerable as the default stream depth is limited to 1MiB. Versions 8.0.3 and 7.0.14 contain a patch. Some workarounds are available. For DCERPC/UDP, disable the parser. For DCERPC/TCP, the `stream.reassembly.depth` setting will limit the amount of data that can be buffered. For DCERPC/SMB, the `stream.reassembly.depth` can be used as well, but is set to unlimited by default. Imposing a limit here may lead to loss of visibility in SMB.
TEE_Malloc in Samsung mTower through 0.3.0 allows a trusted application to achieve Excessive Memory Allocation via a large len value, as demonstrated by a Numaker-PFM-M2351 TEE kernel crash.
An uncontrolled resource consumption vulnerability in Juniper Networks Junos OS on QFX5000 Series and EX4600 Series switches allows an attacker sending large amounts of legitimate traffic destined to the device to cause Interchassis Control Protocol (ICCP) interruptions, leading to an unstable control connection between the Multi-Chassis Link Aggregation Group (MC-LAG) nodes which can in turn lead to traffic loss. Continued receipt of this amount of traffic will create a sustained Denial of Service (DoS) condition. An indication that the system could be impacted by this issue is the following log message: "DDOS_PROTOCOL_VIOLATION_SET: Warning: Host-bound traffic for protocol/exception LOCALNH:aggregate exceeded its allowed bandwidth at fpc <fpc number> for <n> times, started at <timestamp>" This issue affects Juniper Networks Junos OS on QFX5000 Series and EX4600 Series: 15.1 versions prior to 15.1R7-S9; 17.3 versions prior to 17.3R3-S11; 17.4 versions prior to 17.4R2-S13, 17.4R3-S5; 18.3 versions prior to 18.3R3-S5; 18.4 versions prior to 18.4R2-S8, 18.4R3-S7; 19.1 versions prior to 19.1R3-S5; 19.2 versions prior to 19.2R1-S6, 19.2R3-S2; 19.3 versions prior to 19.3R2-S6, 19.3R3-S2; 19.4 versions prior to 19.4R1-S4, 19.4R2-S4, 19.4R3-S2; 20.1 versions prior to 20.1R2-S2, 20.1R3; 20.2 versions prior to 20.2R2-S3, 20.2R3; 20.3 versions prior to 20.3R2; 20.4 versions prior to 20.4R1-S1, 20.4R2.
Foundry Artifacts was found to be vulnerable to a Denial Of Service attack due to disk being potentially filled up based on an user supplied argument (size).
An Allocation of Resources Without Limits or Throttling vulnerability in the PFE management daemon (evo-pfemand) of Juniper Networks Junos OS Evolved allows an authenticated, network-based attacker to cause an FPC crash leading to a Denial of Service (DoS).When specific SNMP GET operations or specific low-priviledged CLI commands are executed, a GUID resource leak will occur, eventually leading to exhaustion and resulting in FPCs to hang. Affected FPCs need to be manually restarted to recover. GUID exhaustion will trigger a syslog message like one of the following: evo-pfemand[<pid>]: get_next_guid: Ran out of Guid Space ... evo-aftmand-zx[<pid>]: get_next_guid: Ran out of Guid Space ... The leak can be monitored by running the following command and taking note of the values in the rightmost column labeled Guids: user@host> show platform application-info allocations app evo-pfemand/evo-pfemand In case one or more of these values are constantly increasing the leak is happening. This issue affects Junos OS Evolved: * All versions before 21.4R3-S7-EVO, * 22.1 versions before 22.1R3-S6-EVO, * 22.2 versions before 22.2R3-EVO, * 22.3 versions before 22.3R3-EVO, * 22.4 versions before 22.4R2-EVO. Please note that this issue is similar to, but different from CVE-2024-47508 and CVE-2024-47509.
Mattermost versions 8.1.x before 8.1.12, 9.6.x before 9.6.1, 9.5.x before 9.5.3, 9.4.x before 9.4.5 fail to limit the number of active sessions, which allows an authenticated attacker to crash the server via repeated requests to the getSessions API after flooding the sessions table.
Teamplus Pro community discussion function has an ‘allocation of resource without limits or throttling’ vulnerability. A remote attacker with general user privilege posting a thread with large content can cause the receiving client device to allocate too much memory, leading to abnormal termination of this client’s Teamplus Pro application.
Mattermost versions 9.10.x <= 9.10.2, 9.11.x <= 9.11.1 and 9.5.x <= 9.5.9 fail to prevent detailed error messages from being displayed in Playbooks which allows an attacker to generate a large response and cause an amplified GraphQL response which in turn could cause the application to crash by sending a specially crafted request to Playbooks.
Helm is a tool for managing Charts. Charts are packages of pre-configured Kubernetes resources. Fuzz testing, provided by the CNCF, identified input to functions in the _strvals_ package that can cause an out of memory panic. The _strvals_ package contains a parser that turns strings in to Go structures. The _strvals_ package converts these strings into structures Go can work with. Some string inputs can cause array data structures to be created causing an out of memory panic. Applications that use the _strvals_ package in the Helm SDK to parse user supplied input can suffer a Denial of Service when that input causes a panic that cannot be recovered from. The Helm Client will panic with input to `--set`, `--set-string`, and other value setting flags that causes an out of memory panic. Helm is not a long running service so the panic will not affect future uses of the Helm client. This issue has been resolved in 3.9.4. SDK users can validate strings supplied by users won't create large arrays causing significant memory usage before passing them to the _strvals_ functions.
An Allocation of Resources Without Limits or Throttling vulnerability in the kernel of Juniper Networks Junos OS Evolved allows an unauthenticated, network based attacker to cause a Denial of Service (DoS). In specific cases the state of TCP sessions that are terminated is not cleared, which over time leads to an exhaustion of resources, preventing new connections to the control plane from being established. A continuously increasing number of connections shown by: user@host > show system connections is indicative of the problem. To recover the respective RE needs to be restarted manually. This issue only affects IPv4 but does not affect IPv6. This issue only affects TCP sessions established in-band (over an interface on an FPC) but not out-of-band (over the management ethernet port on the routing-engine). This issue affects Junos OS Evolved: * All versions before 21.4R3-S9-EVO, * 22.2 versions before 22.2R3-S4-EVO, * 22.4 version before 22.4R3-S3-EVO, * 23.2 versions before 23.2R2-S1-EVO, * 23.4 versions before 23.4R2-EVO.