IBM OpenBMC OP910 and OP940 could allow a privileged user to cause a denial of service by uploading or deleting too many CA certificates in a short period of time. IBM X-Force ID: 2226337.
IBM OPENBMC OP910 and OP940 could allow a privileged user to upload an improper site identity certificate that may cause it to lose network services. IBM X-Force ID: 207221.
Closing of an event channel in the Linux kernel can result in a deadlock. This happens when the close is being performed in parallel to an unrelated Xen console action and the handling of a Xen console interrupt in an unprivileged guest. The closing of an event channel is e.g. triggered by removal of a paravirtual device on the other side. As this action will cause console messages to be issued on the other side quite often, the chance of triggering the deadlock is not neglectable. Note that 32-bit Arm-guests are not affected, as the 32-bit Linux kernel on Arm doesn't use queued-RW-locks, which are required to trigger the issue (on Arm32 a waiting writer doesn't block further readers to get the lock).
IBM Db2 for Linux, UNIX and Windows 11.1 and 11.5 may be vulnerable to a Denial of Service when executing a specially crafted 'Load' command. IBM X-Force ID: 241676.
In affected versions of Octopus Server it was possible for a user with sufficient access to set custom headers in all server responses. By submitting a specifically crafted referrer header the user could ensure that all subsequent server responses would return 500 errors rendering the site mostly unusable. The user would be able to subsequently set and unset the referrer header to control the denial of service state with a valid CSRF token whilst new CSRF tokens could not be generated.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5.0.0 through 10.5.0.11, 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.2 is vulnerable to a denial of service as the server may crash under certain conditions with a specially crafted query.
IBM App Connect Enterprise Certified Container 4.2 could allow a user from the administration console to cause a denial of service by creating a specially crafted request. IBM X-Force ID: 228221.
IBM Data Risk Manager (iDNA) 2.0.6 could allow a privileged user to cause a denial of service due to improper input validation. IBM X-Force ID: 184937.
IBM TXSeries for Multiplatforms, 8.1, 8.2, and 9.1, CICS TX Standard CICS TX Advanced 10.1 and 11.1 could allow a privileged user to cause a denial of service due to uncontrolled resource consumption. IBM X-Force ID: 266016.
A flaw incorrect umask during file or directory modification in the Linux kernel NFS (network file system) functionality was found in the way user create and delete object using NFSv4.2 or newer if both simultaneously accessing the NFS by the other process that is not using new NFSv4.2. A user with access to the NFS could use this flaw to starve the resources causing denial of service.
IBM App Connect Enterprise 11.0.0.8 through 11.0.0.19 and 12.0.1.0 through 12.0.5.0 is vulnerable to a buffer overflow. A remote privileged user could overflow a buffer and cause the application to crash. IBM X-Force ID: 238538.
IBM Host firmware for LC-class Systems is vulnerable to a stack based buffer overflow, caused by improper bounds checking. A remote privileged attacker could exploit this vulnerability and cause a denial of service. IBM X-Force ID: 190037.
In the Linux kernel, the following vulnerability has been resolved: thermal: intel: hfi: Add syscore callbacks for system-wide PM The kernel allocates a memory buffer and provides its location to the hardware, which uses it to update the HFI table. This allocation occurs during boot and remains constant throughout runtime. When resuming from hibernation, the restore kernel allocates a second memory buffer and reprograms the HFI hardware with the new location as part of a normal boot. The location of the second memory buffer may differ from the one allocated by the image kernel. When the restore kernel transfers control to the image kernel, its HFI buffer becomes invalid, potentially leading to memory corruption if the hardware writes to it (the hardware continues to use the buffer from the restore kernel). It is also possible that the hardware "forgets" the address of the memory buffer when resuming from "deep" suspend. Memory corruption may also occur in such a scenario. To prevent the described memory corruption, disable HFI when preparing to suspend or hibernate. Enable it when resuming. Add syscore callbacks to handle the package of the boot CPU (packages of non-boot CPUs are handled via CPU offline). Syscore ops always run on the boot CPU. Additionally, HFI only needs to be disabled during "deep" suspend and hibernation. Syscore ops only run in these cases. [ rjw: Comment adjustment, subject and changelog edits ]
IBM WebSphere Application Server Liberty 18.0.0.2 through 24.0.0.4 is vulnerable to a denial of service, caused by sending a specially crafted request. A remote attacker could exploit this vulnerability to cause the server to consume memory resources. IBM X-Force ID: 284574.
In the Linux kernel, the following vulnerability has been resolved: tun: limit printing rate when illegal packet received by tun dev vhost_worker will call tun call backs to receive packets. If too many illegal packets arrives, tun_do_read will keep dumping packet contents. When console is enabled, it will costs much more cpu time to dump packet and soft lockup will be detected. net_ratelimit mechanism can be used to limit the dumping rate. PID: 33036 TASK: ffff949da6f20000 CPU: 23 COMMAND: "vhost-32980" #0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253 #1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3 #2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e #3 [fffffe00003fced0] do_nmi at ffffffff8922660d #4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663 [exception RIP: io_serial_in+20] RIP: ffffffff89792594 RSP: ffffa655314979e8 RFLAGS: 00000002 RAX: ffffffff89792500 RBX: ffffffff8af428a0 RCX: 0000000000000000 RDX: 00000000000003fd RSI: 0000000000000005 RDI: ffffffff8af428a0 RBP: 0000000000002710 R8: 0000000000000004 R9: 000000000000000f R10: 0000000000000000 R11: ffffffff8acbf64f R12: 0000000000000020 R13: ffffffff8acbf698 R14: 0000000000000058 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #5 [ffffa655314979e8] io_serial_in at ffffffff89792594 #6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470 #7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6 #8 [ffffa65531497a20] uart_console_write at ffffffff8978b605 #9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558 #10 [ffffa65531497ac8] console_unlock at ffffffff89316124 #11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07 #12 [ffffa65531497b68] printk at ffffffff89318306 #13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765 #14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun] #15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun] #16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net] #17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost] #18 [ffffa65531497f10] kthread at ffffffff892d2e72 #19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f
In the Linux kernel, the following vulnerability has been resolved: arm64/sme: Always exit sme_alloc() early with existing storage When sme_alloc() is called with existing storage and we are not flushing we will always allocate new storage, both leaking the existing storage and corrupting the state. Fix this by separating the checks for flushing and for existing storage as we do for SVE. Callers that reallocate (eg, due to changing the vector length) should call sme_free() themselves.
In the Linux kernel, the following vulnerability has been resolved: x86, relocs: Ignore relocations in .notes section When building with CONFIG_XEN_PV=y, .text symbols are emitted into the .notes section so that Xen can find the "startup_xen" entry point. This information is used prior to booting the kernel, so relocations are not useful. In fact, performing relocations against the .notes section means that the KASLR base is exposed since /sys/kernel/notes is world-readable. To avoid leaking the KASLR base without breaking unprivileged tools that are expecting to read /sys/kernel/notes, skip performing relocations in the .notes section. The values readable in .notes are then identical to those found in System.map.
In the Linux kernel, the following vulnerability has been resolved: ppp_async: limit MRU to 64K syzbot triggered a warning [1] in __alloc_pages(): WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp) Willem fixed a similar issue in commit c0a2a1b0d631 ("ppp: limit MRU to 64K") Adopt the same sanity check for ppp_async_ioctl(PPPIOCSMRU) [1]: WARNING: CPU: 1 PID: 11 at mm/page_alloc.c:4543 __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 Modules linked in: CPU: 1 PID: 11 Comm: kworker/u4:0 Not tainted 6.8.0-rc2-syzkaller-g41bccc98fb79 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 Workqueue: events_unbound flush_to_ldisc pstate: 204000c5 (nzCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 lr : __alloc_pages+0xc8/0x698 mm/page_alloc.c:4537 sp : ffff800093967580 x29: ffff800093967660 x28: ffff8000939675a0 x27: dfff800000000000 x26: ffff70001272ceb4 x25: 0000000000000000 x24: ffff8000939675c0 x23: 0000000000000000 x22: 0000000000060820 x21: 1ffff0001272ceb8 x20: ffff8000939675e0 x19: 0000000000000010 x18: ffff800093967120 x17: ffff800083bded5c x16: ffff80008ac97500 x15: 0000000000000005 x14: 1ffff0001272cebc x13: 0000000000000000 x12: 0000000000000000 x11: ffff70001272cec1 x10: 1ffff0001272cec0 x9 : 0000000000000001 x8 : ffff800091c91000 x7 : 0000000000000000 x6 : 000000000000003f x5 : 00000000ffffffff x4 : 0000000000000000 x3 : 0000000000000020 x2 : 0000000000000008 x1 : 0000000000000000 x0 : ffff8000939675e0 Call trace: __alloc_pages+0x308/0x698 mm/page_alloc.c:4543 __alloc_pages_node include/linux/gfp.h:238 [inline] alloc_pages_node include/linux/gfp.h:261 [inline] __kmalloc_large_node+0xbc/0x1fc mm/slub.c:3926 __do_kmalloc_node mm/slub.c:3969 [inline] __kmalloc_node_track_caller+0x418/0x620 mm/slub.c:4001 kmalloc_reserve+0x17c/0x23c net/core/skbuff.c:590 __alloc_skb+0x1c8/0x3d8 net/core/skbuff.c:651 __netdev_alloc_skb+0xb8/0x3e8 net/core/skbuff.c:715 netdev_alloc_skb include/linux/skbuff.h:3235 [inline] dev_alloc_skb include/linux/skbuff.h:3248 [inline] ppp_async_input drivers/net/ppp/ppp_async.c:863 [inline] ppp_asynctty_receive+0x588/0x186c drivers/net/ppp/ppp_async.c:341 tty_ldisc_receive_buf+0x12c/0x15c drivers/tty/tty_buffer.c:390 tty_port_default_receive_buf+0x74/0xac drivers/tty/tty_port.c:37 receive_buf drivers/tty/tty_buffer.c:444 [inline] flush_to_ldisc+0x284/0x6e4 drivers/tty/tty_buffer.c:494 process_one_work+0x694/0x1204 kernel/workqueue.c:2633 process_scheduled_works kernel/workqueue.c:2706 [inline] worker_thread+0x938/0xef4 kernel/workqueue.c:2787 kthread+0x288/0x310 kernel/kthread.c:388 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860
In the Linux kernel, the following vulnerability has been resolved: powerpc/kasan: Limit KASAN thread size increase to 32KB KASAN is seen to increase stack usage, to the point that it was reported to lead to stack overflow on some 32-bit machines (see link). To avoid overflows the stack size was doubled for KASAN builds in commit 3e8635fb2e07 ("powerpc/kasan: Force thread size increase with KASAN"). However with a 32KB stack size to begin with, the doubling leads to a 64KB stack, which causes build errors: arch/powerpc/kernel/switch.S:249: Error: operand out of range (0x000000000000fe50 is not between 0xffffffffffff8000 and 0x0000000000007fff) Although the asm could be reworked, in practice a 32KB stack seems sufficient even for KASAN builds - the additional usage seems to be in the 2-3KB range for a 64-bit KASAN build. So only increase the stack for KASAN if the stack size is < 32KB.
In the Linux kernel, the following vulnerability has been resolved: fbcon: always restore the old font data in fbcon_do_set_font() Commit a5a923038d70 (fbdev: fbcon: Properly revert changes when vc_resize() failed) started restoring old font data upon failure (of vc_resize()). But it performs so only for user fonts. It means that the "system"/internal fonts are not restored at all. So in result, the very first call to fbcon_do_set_font() performs no restore at all upon failing vc_resize(). This can be reproduced by Syzkaller to crash the system on the next invocation of font_get(). It's rather hard to hit the allocation failure in vc_resize() on the first font_set(), but not impossible. Esp. if fault injection is used to aid the execution/failure. It was demonstrated by Sirius: BUG: unable to handle page fault for address: fffffffffffffff8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD cb7b067 P4D cb7b067 PUD cb7d067 PMD 0 Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 8007 Comm: poc Not tainted 6.7.0-g9d1694dc91ce #20 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:fbcon_get_font+0x229/0x800 drivers/video/fbdev/core/fbcon.c:2286 Call Trace: <TASK> con_font_get drivers/tty/vt/vt.c:4558 [inline] con_font_op+0x1fc/0xf20 drivers/tty/vt/vt.c:4673 vt_k_ioctl drivers/tty/vt/vt_ioctl.c:474 [inline] vt_ioctl+0x632/0x2ec0 drivers/tty/vt/vt_ioctl.c:752 tty_ioctl+0x6f8/0x1570 drivers/tty/tty_io.c:2803 vfs_ioctl fs/ioctl.c:51 [inline] ... So restore the font data in any case, not only for user fonts. Note the later 'if' is now protected by 'old_userfont' and not 'old_data' as the latter is always set now. (And it is supposed to be non-NULL. Otherwise we would see the bug above again.)
In the Linux kernel, the following vulnerability has been resolved: dccp/tcp: Unhash sk from ehash for tb2 alloc failure after check_estalblished(). syzkaller reported a warning [0] in inet_csk_destroy_sock() with no repro. WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); However, the syzkaller's log hinted that connect() failed just before the warning due to FAULT_INJECTION. [1] When connect() is called for an unbound socket, we search for an available ephemeral port. If a bhash bucket exists for the port, we call __inet_check_established() or __inet6_check_established() to check if the bucket is reusable. If reusable, we add the socket into ehash and set inet_sk(sk)->inet_num. Later, we look up the corresponding bhash2 bucket and try to allocate it if it does not exist. Although it rarely occurs in real use, if the allocation fails, we must revert the changes by check_established(). Otherwise, an unconnected socket could illegally occupy an ehash entry. Note that we do not put tw back into ehash because sk might have already responded to a packet for tw and it would be better to free tw earlier under such memory presure. [0]: WARNING: CPU: 0 PID: 350830 at net/ipv4/inet_connection_sock.c:1193 inet_csk_destroy_sock (net/ipv4/inet_connection_sock.c:1193) Modules linked in: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:inet_csk_destroy_sock (net/ipv4/inet_connection_sock.c:1193) Code: 41 5c 41 5d 41 5e e9 2d 4a 3d fd e8 28 4a 3d fd 48 89 ef e8 f0 cd 7d ff 5b 5d 41 5c 41 5d 41 5e e9 13 4a 3d fd e8 0e 4a 3d fd <0f> 0b e9 61 fe ff ff e8 02 4a 3d fd 4c 89 e7 be 03 00 00 00 e8 05 RSP: 0018:ffffc9000b21fd38 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000009e78 RCX: ffffffff840bae40 RDX: ffff88806e46c600 RSI: ffffffff840bb012 RDI: ffff88811755cca8 RBP: ffff88811755c880 R08: 0000000000000003 R09: 0000000000000000 R10: 0000000000009e78 R11: 0000000000000000 R12: ffff88811755c8e0 R13: ffff88811755c892 R14: ffff88811755c918 R15: 0000000000000000 FS: 00007f03e5243800(0000) GS:ffff88811ae00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b32f21000 CR3: 0000000112ffe001 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> ? inet_csk_destroy_sock (net/ipv4/inet_connection_sock.c:1193) dccp_close (net/dccp/proto.c:1078) inet_release (net/ipv4/af_inet.c:434) __sock_release (net/socket.c:660) sock_close (net/socket.c:1423) __fput (fs/file_table.c:377) __fput_sync (fs/file_table.c:462) __x64_sys_close (fs/open.c:1557 fs/open.c:1539 fs/open.c:1539) do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129) RIP: 0033:0x7f03e53852bb Code: 03 00 00 00 0f 05 48 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 43 c9 f5 ff 8b 7c 24 0c 41 89 c0 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 89 44 24 0c e8 a1 c9 f5 ff 8b 44 RSP: 002b:00000000005dfba0 EFLAGS: 00000293 ORIG_RAX: 0000000000000003 RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f03e53852bb RDX: 0000000000000002 RSI: 0000000000000002 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000167c R10: 0000000008a79680 R11: 0000000000000293 R12: 00007f03e4e43000 R13: 00007f03e4e43170 R14: 00007f03e4e43178 R15: 00007f03e4e43170 </TASK> [1]: FAULT_INJECTION: forcing a failure. name failslab, interval 1, probability 0, space 0, times 0 CPU: 0 PID: 350833 Comm: syz-executor.1 Not tainted 6.7.0-12272-g2121c43f88f5 #9 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:107 (discriminator 1)) should_fail_ex (lib/fault-inject.c:52 lib/fault-inject.c:153) should_failslab (mm/slub.c:3748) kmem_cache_alloc (mm/slub.c:3763 mm/slub.c:3842 mm/slub.c:3867) inet_bind2_bucket_create ---truncated---
In the Linux kernel, the following vulnerability has been resolved: RDMA/qedr: Fix qedr_create_user_qp error flow Avoid the following warning by making sure to free the allocated resources in case that qedr_init_user_queue() fail. -----------[ cut here ]----------- WARNING: CPU: 0 PID: 143192 at drivers/infiniband/core/rdma_core.c:874 uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] Modules linked in: tls target_core_user uio target_core_pscsi target_core_file target_core_iblock ib_srpt ib_srp scsi_transport_srp nfsd nfs_acl rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs 8021q garp mrp stp llc ext4 mbcache jbd2 opa_vnic ib_umad ib_ipoib sunrpc rdma_ucm ib_isert iscsi_target_mod target_core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm hfi1 intel_rapl_msr intel_rapl_common mgag200 qedr sb_edac drm_shmem_helper rdmavt x86_pkg_temp_thermal drm_kms_helper intel_powerclamp ib_uverbs coretemp i2c_algo_bit kvm_intel dell_wmi_descriptor ipmi_ssif sparse_keymap kvm ib_core rfkill syscopyarea sysfillrect video sysimgblt irqbypass ipmi_si ipmi_devintf fb_sys_fops rapl iTCO_wdt mxm_wmi iTCO_vendor_support intel_cstate pcspkr dcdbas intel_uncore ipmi_msghandler lpc_ich acpi_power_meter mei_me mei fuse drm xfs libcrc32c qede sd_mod ahci libahci t10_pi sg crct10dif_pclmul crc32_pclmul crc32c_intel qed libata tg3 ghash_clmulni_intel megaraid_sas crc8 wmi [last unloaded: ib_srpt] CPU: 0 PID: 143192 Comm: fi_rdm_tagged_p Kdump: loaded Not tainted 5.14.0-408.el9.x86_64 #1 Hardware name: Dell Inc. PowerEdge R430/03XKDV, BIOS 2.14.0 01/25/2022 RIP: 0010:uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] Code: 5d 41 5c 41 5d 41 5e e9 0f 26 1b dd 48 89 df e8 67 6a ff ff 49 8b 86 10 01 00 00 48 85 c0 74 9c 4c 89 e7 e8 83 c0 cb dd eb 92 <0f> 0b eb be 0f 0b be 04 00 00 00 48 89 df e8 8e f5 ff ff e9 6d ff RSP: 0018:ffffb7c6cadfbc60 EFLAGS: 00010286 RAX: ffff8f0889ee3f60 RBX: ffff8f088c1a5200 RCX: 00000000802a0016 RDX: 00000000802a0017 RSI: 0000000000000001 RDI: ffff8f0880042600 RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8f11fffd5000 R11: 0000000000039000 R12: ffff8f0d5b36cd80 R13: ffff8f088c1a5250 R14: ffff8f1206d91000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8f11d7c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000147069200e20 CR3: 00000001c7210002 CR4: 00000000001706f0 Call Trace: <TASK> ? show_trace_log_lvl+0x1c4/0x2df ? show_trace_log_lvl+0x1c4/0x2df ? ib_uverbs_close+0x1f/0xb0 [ib_uverbs] ? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] ? __warn+0x81/0x110 ? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] ? report_bug+0x10a/0x140 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs] ib_uverbs_close+0x1f/0xb0 [ib_uverbs] __fput+0x94/0x250 task_work_run+0x5c/0x90 do_exit+0x270/0x4a0 do_group_exit+0x2d/0x90 get_signal+0x87c/0x8c0 arch_do_signal_or_restart+0x25/0x100 ? ib_uverbs_ioctl+0xc2/0x110 [ib_uverbs] exit_to_user_mode_loop+0x9c/0x130 exit_to_user_mode_prepare+0xb6/0x100 syscall_exit_to_user_mode+0x12/0x40 do_syscall_64+0x69/0x90 ? syscall_exit_work+0x103/0x130 ? syscall_exit_to_user_mode+0x22/0x40 ? do_syscall_64+0x69/0x90 ? syscall_exit_work+0x103/0x130 ? syscall_exit_to_user_mode+0x22/0x40 ? do_syscall_64+0x69/0x90 ? do_syscall_64+0x69/0x90 ? common_interrupt+0x43/0xa0 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x1470abe3ec6b Code: Unable to access opcode bytes at RIP 0x1470abe3ec41. RSP: 002b:00007fff13ce9108 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: fffffffffffffffc RBX: 00007fff13ce9218 RCX: 00001470abe3ec6b RDX: 00007fff13ce9200 RSI: 00000000c0181b01 RDI: 0000000000000004 RBP: 00007fff13ce91e0 R08: 0000558d9655da10 R09: 0000558d9655dd00 R10: 00007fff13ce95c0 R11: 0000000000000246 R12: 00007fff13ce9358 R13: 0000000000000013 R14: 0000558d9655db50 R15: 00007fff13ce9470 </TASK> --[ end trace 888a9b92e04c5c97 ]--
IBM WebSphere Application Server 8.5, 9.0 and IBM WebSphere Application Server Liberty 17.0.0.3 through 24.0.0.4 are vulnerable to a denial of service, caused by sending a specially crafted request. A remote attacker could exploit this vulnerability to cause the server to consume memory resources. IBM X-Force ID: 281516.
In the Linux kernel, the following vulnerability has been resolved: media: s5p_cec: limit msg.len to CEC_MAX_MSG_SIZE I expect that the hardware will have limited this to 16, but just in case it hasn't, check for this corner case.
IBM WebSphere Application Server Liberty 17.0.0.3 through 24.0.0.4 is vulnerable to a denial of service, caused by sending a specially crafted request. A remote attacker could exploit this vulnerability to cause the server to consume memory resources. IBM X-Force ID: 280400.
A memory overflow vulnerability was found in the Linux kernel’s ipc functionality of the memcg subsystem, in the way a user calls the semget function multiple times, creating semaphores. This flaw allows a local user to starve the resources, causing a denial of service. The highest threat from this vulnerability is to system availability.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_codec: Fix leaking content of local_codecs The following memory leak can be observed when the controller supports codecs which are stored in local_codecs list but the elements are never freed: unreferenced object 0xffff88800221d840 (size 32): comm "kworker/u3:0", pid 36, jiffies 4294898739 (age 127.060s) hex dump (first 32 bytes): f8 d3 02 03 80 88 ff ff 80 d8 21 02 80 88 ff ff ..........!..... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffffb324f557>] __kmalloc+0x47/0x120 [<ffffffffb39ef37d>] hci_codec_list_add.isra.0+0x2d/0x160 [<ffffffffb39ef643>] hci_read_codec_capabilities+0x183/0x270 [<ffffffffb39ef9ab>] hci_read_supported_codecs+0x1bb/0x2d0 [<ffffffffb39f162e>] hci_read_local_codecs_sync+0x3e/0x60 [<ffffffffb39ff1b3>] hci_dev_open_sync+0x943/0x11e0 [<ffffffffb396d55d>] hci_power_on+0x10d/0x3f0 [<ffffffffb30c99b4>] process_one_work+0x404/0x800 [<ffffffffb30ca134>] worker_thread+0x374/0x670 [<ffffffffb30d9108>] kthread+0x188/0x1c0 [<ffffffffb304db6b>] ret_from_fork+0x2b/0x50 [<ffffffffb300206a>] ret_from_fork_asm+0x1a/0x30
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid online resizing failures due to oversized flex bg When we online resize an ext4 filesystem with a oversized flexbg_size, mkfs.ext4 -F -G 67108864 $dev -b 4096 100M mount $dev $dir resize2fs $dev 16G the following WARN_ON is triggered: ================================================================== WARNING: CPU: 0 PID: 427 at mm/page_alloc.c:4402 __alloc_pages+0x411/0x550 Modules linked in: sg(E) CPU: 0 PID: 427 Comm: resize2fs Tainted: G E 6.6.0-rc5+ #314 RIP: 0010:__alloc_pages+0x411/0x550 Call Trace: <TASK> __kmalloc_large_node+0xa2/0x200 __kmalloc+0x16e/0x290 ext4_resize_fs+0x481/0xd80 __ext4_ioctl+0x1616/0x1d90 ext4_ioctl+0x12/0x20 __x64_sys_ioctl+0xf0/0x150 do_syscall_64+0x3b/0x90 ================================================================== This is because flexbg_size is too large and the size of the new_group_data array to be allocated exceeds MAX_ORDER. Currently, the minimum value of MAX_ORDER is 8, the minimum value of PAGE_SIZE is 4096, the corresponding maximum number of groups that can be allocated is: (PAGE_SIZE << MAX_ORDER) / sizeof(struct ext4_new_group_data) ≈ 21845 And the value that is down-aligned to the power of 2 is 16384. Therefore, this value is defined as MAX_RESIZE_BG, and the number of groups added each time does not exceed this value during resizing, and is added multiple times to complete the online resizing. The difference is that the metadata in a flex_bg may be more dispersed.
In the Linux kernel, the following vulnerability has been resolved: HID: sony: Fix a potential memory leak in sony_probe() If an error occurs after a successful usb_alloc_urb() call, usb_free_urb() should be called.
IBM QRadar Incident Forensics 7.2 and 7.3 does not properly restrict the size or amount of resources requested which could allow an unauthenticated user to cause a denial of service. IBM X-Force ID: 144650.
IBM Security Guardium 12.0 could allow a privileged user to perform unauthorized actions that could lead to a denial of service. IBM X-Force ID: 271690.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 could allow an authenticated user with CONNECT privileges to cause a denial of service using a specially crafted query. IBM X-Force ID: 272644.
In the Linux kernel, the following vulnerability has been resolved: sound/virtio: Fix cancel_sync warnings on uninitialized work_structs Betty reported hitting the following warning: [ 8.709131][ T221] WARNING: CPU: 2 PID: 221 at kernel/workqueue.c:4182 ... [ 8.713282][ T221] Call trace: [ 8.713365][ T221] __flush_work+0x8d0/0x914 [ 8.713468][ T221] __cancel_work_sync+0xac/0xfc [ 8.713570][ T221] cancel_work_sync+0x24/0x34 [ 8.713667][ T221] virtsnd_remove+0xa8/0xf8 [virtio_snd ab15f34d0dd772f6d11327e08a81d46dc9c36276] [ 8.713868][ T221] virtsnd_probe+0x48c/0x664 [virtio_snd ab15f34d0dd772f6d11327e08a81d46dc9c36276] [ 8.714035][ T221] virtio_dev_probe+0x28c/0x390 [ 8.714139][ T221] really_probe+0x1bc/0x4c8 ... It seems we're hitting the error path in virtsnd_probe(), which triggers a virtsnd_remove() which iterates over the substreams calling cancel_work_sync() on the elapsed_period work_struct. Looking at the code, from earlier in: virtsnd_probe()->virtsnd_build_devs()->virtsnd_pcm_parse_cfg() We set snd->nsubstreams, allocate the snd->substreams, and if we then hit an error on the info allocation or something in virtsnd_ctl_query_info() fails, we will exit without having initialized the elapsed_period work_struct. When that error path unwinds we then call virtsnd_remove() which as long as the substreams array is allocated, will iterate through calling cancel_work_sync() on the uninitialized work struct hitting this warning. Takashi Iwai suggested this fix, which initializes the substreams structure right after allocation, so that if we hit the error paths we avoid trying to cleanup uninitialized data. Note: I have not yet managed to reproduce the issue myself, so this patch has had limited testing. Feedback or thoughts would be appreciated!
IBM WebSphere Application Server Liberty 18.0.0.2 through 25.0.0.8 is vulnerable to a denial of service, caused by sending a specially-crafted request. A remote attacker could exploit this vulnerability to cause the server to consume memory resources.
IBM 4769 Developers Toolkit 7.0.0 through 7.5.52 could allow a remote attacker to cause a denial of service in the Hardware Security Module (HSM) due to improper memory allocation of an excessive size.
IBM Secure External Authentication Server 2.4.3.2, 6.0.1, 6.0.2 and IBM Secure Proxy 3.4.3.2, 6.0.1, 6.0.2 could allow a remote user to consume resources causing a denial of service due to a resource leak.
IBM API Connect 2018.1 through 2018.3.7 could allow an unauthenticated attacker to cause a denial of service due to not setting limits on JSON payload size. IBM X-Force ID: 148802.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 11.1 and 11.5 under very specific conditions, could allow a local user to keep running a procedure that could cause the system to run out of memory.and cause a denial of service. IBM X-Force ID: 202267.
Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714)
An issue was discovered in drivers/usb/storage/ene_ub6250.c for the ENE UB6250 reader driver in the Linux kernel before 6.2.5. An object could potentially extend beyond the end of an allocation.
IBM InfoSphere Information Server 11.7.0.0 through 11.7.1.6 could allow a remote attacker to cause a denial of service due to insufficient validation of incoming request resources.
IBM Db2 for Linux, UNIX and Windows (includes DB2 Connect Server) 11.5.0 through 11.5.9 and 12.1.0 through 12.1.1 could allow an authenticated user to cause a denial of service when using Q replication due to the improper allocation of CPU resources.
IBM Cognos Analytics 11.2.0, 11.2.1, 11.2.2, 11.2.3, 11.2.4, 12.0.0, 12.0.1, 12.0.2, 12.0.3, and 12.0.4 could allow an authenticated user to cause a denial of service by sending a specially crafted request that would exhaust memory resources.
In the Linux kernel, the following vulnerability has been resolved: powerpc/code-patching: Fix KASAN hit by not flagging text patching area as VM_ALLOC Erhard reported the following KASAN hit while booting his PowerMac G4 with a KASAN-enabled kernel 6.13-rc6: BUG: KASAN: vmalloc-out-of-bounds in copy_to_kernel_nofault+0xd8/0x1c8 Write of size 8 at addr f1000000 by task chronyd/1293 CPU: 0 UID: 123 PID: 1293 Comm: chronyd Tainted: G W 6.13.0-rc6-PMacG4 #2 Tainted: [W]=WARN Hardware name: PowerMac3,6 7455 0x80010303 PowerMac Call Trace: [c2437590] [c1631a84] dump_stack_lvl+0x70/0x8c (unreliable) [c24375b0] [c0504998] print_report+0xdc/0x504 [c2437610] [c050475c] kasan_report+0xf8/0x108 [c2437690] [c0505a3c] kasan_check_range+0x24/0x18c [c24376a0] [c03fb5e4] copy_to_kernel_nofault+0xd8/0x1c8 [c24376c0] [c004c014] patch_instructions+0x15c/0x16c [c2437710] [c00731a8] bpf_arch_text_copy+0x60/0x7c [c2437730] [c0281168] bpf_jit_binary_pack_finalize+0x50/0xac [c2437750] [c0073cf4] bpf_int_jit_compile+0xb30/0xdec [c2437880] [c0280394] bpf_prog_select_runtime+0x15c/0x478 [c24378d0] [c1263428] bpf_prepare_filter+0xbf8/0xc14 [c2437990] [c12677ec] bpf_prog_create_from_user+0x258/0x2b4 [c24379d0] [c027111c] do_seccomp+0x3dc/0x1890 [c2437ac0] [c001d8e0] system_call_exception+0x2dc/0x420 [c2437f30] [c00281ac] ret_from_syscall+0x0/0x2c --- interrupt: c00 at 0x5a1274 NIP: 005a1274 LR: 006a3b3c CTR: 005296c8 REGS: c2437f40 TRAP: 0c00 Tainted: G W (6.13.0-rc6-PMacG4) MSR: 0200f932 <VEC,EE,PR,FP,ME,IR,DR,RI> CR: 24004422 XER: 00000000 GPR00: 00000166 af8f3fa0 a7ee3540 00000001 00000000 013b6500 005a5858 0200f932 GPR08: 00000000 00001fe9 013d5fc8 005296c8 2822244c 00b2fcd8 00000000 af8f4b57 GPR16: 00000000 00000001 00000000 00000000 00000000 00000001 00000000 00000002 GPR24: 00afdbb0 00000000 00000000 00000000 006e0004 013ce060 006e7c1c 00000001 NIP [005a1274] 0x5a1274 LR [006a3b3c] 0x6a3b3c --- interrupt: c00 The buggy address belongs to the virtual mapping at [f1000000, f1002000) created by: text_area_cpu_up+0x20/0x190 The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:00000000 index:0x0 pfn:0x76e30 flags: 0x80000000(zone=2) raw: 80000000 00000000 00000122 00000000 00000000 00000000 ffffffff 00000001 raw: 00000000 page dumped because: kasan: bad access detected Memory state around the buggy address: f0ffff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f0ffff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >f1000000: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ^ f1000080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f1000100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ================================================================== f8 corresponds to KASAN_VMALLOC_INVALID which means the area is not initialised hence not supposed to be used yet. Powerpc text patching infrastructure allocates a virtual memory area using get_vm_area() and flags it as VM_ALLOC. But that flag is meant to be used for vmalloc() and vmalloc() allocated memory is not supposed to be used before a call to __vmalloc_node_range() which is never called for that area. That went undetected until commit e4137f08816b ("mm, kasan, kmsan: instrument copy_from/to_kernel_nofault") The area allocated by text_area_cpu_up() is not vmalloc memory, it is mapped directly on demand when needed by map_kernel_page(). There is no VM flag corresponding to such usage, so just pass no flag. That way the area will be unpoisonned and usable immediately.
IBM Db2 for Linux, UNIX and Windows (includes DB2 Connect Server) 11.5.0 through 11.5.9 and 12.1.0 through 12.1.1 under specific configurations could allow an authenticated user to cause a denial of service due to insufficient release of allocated memory resources.
IBM Db2 for Linux, UNIX and Windows (includes DB2 Connect Server) 11.5.0 through 11.5.9 and 12.1.0 through 12.1.1 could allow an authenticated user to cause a denial of service when connecting to a z/OS database due to improper handling of automatic client rerouting.
IBM Cognos Analytics Mobile Server 11.1.7, 11.2.4, and 12.0.0 is vulnerable to Denial of Service due to due to weak or absence of rate limiting. By making unlimited http requests, it is possible for a single user to exhaust server resources over a period of time making service unavailable for other legitimate users. IBM X-Force ID: 230510.
IBM CICS TX 11.1 could allow a local user to cause a denial of service due to improper load handling. IBM X-Force ID: 229437.
IBM Safer Payments 6.4.0.00 through 6.4.2.07, 6.5.0.00 through 6.5.0.05, and 6.6.0.00 through 6.6.0.03 could allow a remote attacker to cause a denial of service due to improper allocation of resources.
In the Linux kernel, the following vulnerability has been resolved: nouveau/firmware: use dma non-coherent allocator Currently, enabling SG_DEBUG in the kernel will cause nouveau to hit a BUG() on startup, when the iommu is enabled: kernel BUG at include/linux/scatterlist.h:187! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 7 PID: 930 Comm: (udev-worker) Not tainted 6.9.0-rc3Lyude-Test+ #30 Hardware name: MSI MS-7A39/A320M GAMING PRO (MS-7A39), BIOS 1.I0 01/22/2019 RIP: 0010:sg_init_one+0x85/0xa0 Code: 69 88 32 01 83 e1 03 f6 c3 03 75 20 a8 01 75 1e 48 09 cb 41 89 54 24 08 49 89 1c 24 41 89 6c 24 0c 5b 5d 41 5c e9 7b b9 88 00 <0f> 0b 0f 0b 0f 0b 48 8b 05 5e 46 9a 01 eb b2 66 66 2e 0f 1f 84 00 RSP: 0018:ffffa776017bf6a0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffa77600d87000 RCX: 000000000000002b RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffffa77680d87000 RBP: 000000000000e000 R08: 0000000000000000 R09: 0000000000000000 R10: ffff98f4c46aa508 R11: 0000000000000000 R12: ffff98f4c46aa508 R13: ffff98f4c46aa008 R14: ffffa77600d4a000 R15: ffffa77600d4a018 FS: 00007feeb5aae980(0000) GS:ffff98f5c4dc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f22cb9a4520 CR3: 00000001043ba000 CR4: 00000000003506f0 Call Trace: <TASK> ? die+0x36/0x90 ? do_trap+0xdd/0x100 ? sg_init_one+0x85/0xa0 ? do_error_trap+0x65/0x80 ? sg_init_one+0x85/0xa0 ? exc_invalid_op+0x50/0x70 ? sg_init_one+0x85/0xa0 ? asm_exc_invalid_op+0x1a/0x20 ? sg_init_one+0x85/0xa0 nvkm_firmware_ctor+0x14a/0x250 [nouveau] nvkm_falcon_fw_ctor+0x42/0x70 [nouveau] ga102_gsp_booter_ctor+0xb4/0x1a0 [nouveau] r535_gsp_oneinit+0xb3/0x15f0 [nouveau] ? srso_return_thunk+0x5/0x5f ? srso_return_thunk+0x5/0x5f ? nvkm_udevice_new+0x95/0x140 [nouveau] ? srso_return_thunk+0x5/0x5f ? srso_return_thunk+0x5/0x5f ? ktime_get+0x47/0xb0 Fix this by using the non-coherent allocator instead, I think there might be a better answer to this, but it involve ripping up some of APIs using sg lists.