A vulnerability in the client forwarding code of multiple Cisco Access Points (APs) could allow an unauthenticated, adjacent attacker to inject packets from the native VLAN to clients within nonnative VLANs on an affected device. This vulnerability is due to a logic error on the AP that forwards packets that are destined to a wireless client if they are received on the native VLAN. An attacker could exploit this vulnerability by obtaining access to the native VLAN and directing traffic directly to the client through their MAC/IP combination. A successful exploit could allow the attacker to bypass VLAN separation and potentially also bypass any Layer 3 protection mechanisms that are deployed.
A vulnerability in Cisco IOS XE Wireless Controller Software for Cisco Catalyst 9800 Series Routers could allow an unauthenticated, adjacent attacker to send ICMPv6 traffic prior to the client being placed into RUN state. The vulnerability is due to an incomplete access control list (ACL) being applied prior to RUN state. An attacker could exploit this vulnerability by connecting to the associated service set identifier (SSID) and sending ICMPv6 traffic. A successful exploit could allow the attacker to send ICMPv6 traffic prior to RUN state.
A vulnerability in the social login configuration option for the guest users of Cisco Business Wireless Access Points (APs) could allow an unauthenticated, adjacent attacker to bypass social login authentication. This vulnerability is due to a logic error with the social login implementation. An attacker could exploit this vulnerability by attempting to authenticate to an affected device. A successful exploit could allow the attacker to access the Guest Portal without authentication.
A vulnerability in the Central Web Authentication (CWA) feature of Cisco IOS XE Software for Wireless Controllers could allow an unauthenticated, adjacent attacker to bypass the pre-authentication access control list (ACL), which could allow access to network resources before user authentication. This vulnerability is due to a logic error when activating the pre-authentication ACL that is received from the authentication, authorization, and accounting (AAA) server. An attacker could exploit this vulnerability by connecting to a wireless network that is configured for CWA and sending traffic through an affected device that should be denied by the configured ACL before user authentication. A successful exploit could allow the attacker to bypass configured ACL protections on the affected device before the user authentication is completed, allowing the attacker to access trusted networks that the device might be protecting.
Layer 2 network filtering capabilities such as IPv6 RA guard or ARP inspection can be bypassed using combinations of VLAN 0 headers and LLC/SNAP headers.
A vulnerability in the anycast gateway feature of Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a device to learn invalid Address Resolution Protocol (ARP) entries. The ARP entries are for nonlocal IP addresses for the subnet. The vulnerability is due to improper validation of a received gratuitous ARP (GARP) request. An attacker could exploit this vulnerability by sending a malicious GARP packet on the local subnet to cause the ARP table on the device to become corrupted. A successful exploit could allow the attacker to populate the ARP table with incorrect entries, which could lead to traffic disruptions.
Multiple clientless SSL VPN products that run in web browsers, including Stonesoft StoneGate; Cisco ASA; SonicWALL E-Class SSL VPN and SonicWALL SSL VPN; SafeNet SecureWire Access Gateway; Juniper Networks Secure Access; Nortel CallPilot; Citrix Access Gateway; and other products, when running in configurations that do not restrict access to the same domain as the VPN, retrieve the content of remote URLs from one domain and rewrite them so they originate from the VPN's domain, which violates the same origin policy and allows remote attackers to conduct cross-site scripting attacks, read cookies that originated from other domains, access the Web VPN session to gain access to internal resources, perform key logging, and conduct other attacks. NOTE: it could be argued that this is a fundamental design problem in any clientless VPN solution, as opposed to a commonly-introduced error that can be fixed in separate implementations. Therefore a single CVE has been assigned for all products that have this design
A vulnerability in the application CLI of Cisco Prime Infrastructure and Cisco Evolved Programmable Network Manager could allow an authenticated, local attacker to gain escalated privileges. This vulnerability is due to improper processing of command line arguments to application scripts. An attacker could exploit this vulnerability by issuing a command on the CLI with malicious options. A successful exploit could allow the attacker to gain the escalated privileges of the root user on the underlying operating system.
A vulnerability in the CLI of Cisco ThousandEyes Enterprise Agent, Virtual Appliance installation type, could allow an authenticated, local attacker to elevate privileges to root on an affected device. This vulnerability is due to insufficient input validation of user-supplied CLI arguments. An attacker could exploit this vulnerability by authenticating to an affected device and using crafted commands at the prompt. A successful exploit could allow the attacker to execute arbitrary commands as root. The attacker must have valid credentials on the affected device.
A vulnerability in the restricted security domain implementation of Cisco Application Policy Infrastructure Controller (APIC) could allow an authenticated, remote attacker to read, modify, or delete non-tenant policies (for example, access policies) created by users associated with a different security domain on an affected system. This vulnerability is due to improper access control when restricted security domains are used to implement multi-tenancy for policies outside the tenant boundaries. An attacker with a valid user account associated with a restricted security domain could exploit this vulnerability. A successful exploit could allow the attacker to read, modify, or delete policies created by users associated with a different security domain. Exploitation is not possible for policies under tenants that an attacker has no authorization to access.
A vulnerability in the access control list (ACL) processing on MPLS interfaces in the ingress direction of Cisco IOS XR Software could allow an unauthenticated, remote attacker to bypass a configured ACL. This vulnerability is due to incomplete support for this feature. An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to bypass an ACL on the affected device. There are workarounds that address this vulnerability. This advisory is part of the September 2023 release of the Cisco IOS XR Software Security Advisory Bundled Publication. For a complete list of the advisories and links to them, see Cisco Event Response: September 2023 Semiannual Cisco IOS XR Software Security Advisory Bundled Publication .
A vulnerability in Cisco DNA Center could allow an unauthenticated, remote attacker to read and modify data in a repository that belongs to an internal service on an affected device. This vulnerability is due to insufficient access control enforcement on API requests. An attacker could exploit this vulnerability by sending a crafted API request to an affected device. A successful exploit could allow the attacker to read and modify data that is handled by an internal service on the affected device.
A vulnerability in the IP geolocation rules of Snort 3 could allow an unauthenticated, remote attacker to potentially bypass IP address restrictions. This vulnerability exists because the configuration for IP geolocation rules is not parsed properly. An attacker could exploit this vulnerability by spoofing an IP address until they bypass the restriction. A successful exploit could allow the attacker to bypass location-based IP address restrictions.
A vulnerability in the web UI of Cisco Catalyst SD-WAN Manager could allow an authenticated, remote attacker to retrieve arbitrary files from an affected system. This vulnerability is due to improper validation of parameters that are sent to the web UI. An attacker could exploit this vulnerability by logging in to Cisco Catalyst SD-WAN Manager and issuing crafted requests using the web UI. A successful exploit could allow the attacker to obtain arbitrary files from the underlying Linux file system of an affected system. To exploit this vulnerability, the attacker must be an authenticated user.
A vulnerability in Cisco Intersight Virtual Appliance could allow an unauthenticated, adjacent attacker to access internal HTTP services that are otherwise inaccessible. This vulnerability is due to insufficient restrictions on internally accessible http proxies. An attacker could exploit this vulnerability by submitting a crafted CLI command. A successful exploit could allow the attacker access to internal subnets beyond the sphere of their intended access level.
A vulnerability in the Cisco IOx application hosting subsystem of Cisco IOS XE Software could allow an authenticated, local attacker to elevate privileges to root on an affected device. This vulnerability is due to insufficient restrictions on the hosted application. An attacker could exploit this vulnerability by logging in to and then escaping the Cisco IOx application container. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with root privileges.
A vulnerability in the Common Execution Environment (CEE) ConfD CLI of Cisco Ultra Cloud Core - Subscriber Microservices Infrastructure (SMI) software could allow an authenticated, local attacker to escalate privileges on an affected device. This vulnerability is due to insufficient access control in the affected CLI. An attacker could exploit this vulnerability by authenticating as a CEE ConfD CLI user and executing a specific CLI command. A successful exploit could allow an attacker to access privileged containers with root privileges.
Multiple vulnerabilities in Cisco Enterprise NFV Infrastructure Software (NFVIS) could allow an attacker to escape from the guest virtual machine (VM) to the host machine, inject commands that execute at the root level, or leak system data from the host to the VM. For more information about these vulnerabilities, see the Details section of this advisory.
A vulnerability in Cisco NX-OS System Software running on Cisco MDS Multilayer Director Switches, Cisco Nexus 7000 Series Switches, and Cisco Nexus 7700 Series Switches could allow an authenticated, local attacker to access the Bash shell of an affected device's operating system, even if the Bash shell is disabled on the system. The vulnerability is due to insufficient sanitization of user-supplied parameters that are passed to certain functions of the Python scripting sandbox of the affected system. An attacker could exploit this vulnerability to escape the scripting sandbox and enter the Bash shell of the operating system with the privileges of the authenticated user for the affected system. To exploit this vulnerability, the attacker must have local access to the affected system and be authenticated to the affected system with administrative or Python execution privileges. Cisco Bug IDs: CSCvd86513.
A vulnerability in the web-based management interface of Cisco AsyncOS for Cisco Content Security Management Appliance (SMA) could allow an unauthenticated, remote attacker to obtain sensitive network information.
A vulnerability with the access control list (ACL) management within a stacked switch configuration of Cisco Business 250 Series Smart Switches and Business 350 Series Managed Switches could allow an unauthenticated, remote attacker to bypass protection offered by a configured ACL on an affected device. This vulnerability is due to incorrect processing of ACLs on a stacked configuration when either the primary or backup switches experience a full stack reload or power cycle. An attacker could exploit this vulnerability by sending crafted traffic through an affected device. A successful exploit could allow the attacker to bypass configured ACLs, causing traffic to be dropped or forwarded in an unexpected manner. The attacker does not have control over the conditions that result in the device being in the vulnerable state. Note: In the vulnerable state, the ACL would be correctly applied on the primary devices but could be incorrectly applied to the backup devices.
A vulnerability in the Simple Network Management Protocol (SNMP) access controls for Cisco FirePOWER Software for Adaptive Security Appliance (ASA) FirePOWER module, Cisco Firepower Management Center (FMC) Software, and Cisco Next-Generation Intrusion Prevention System (NGIPS) Software could allow an unauthenticated, remote attacker to perform an SNMP GET request using a default credential. This vulnerability is due to the presence of a default credential for SNMP version 1 (SNMPv1) and SNMP version 2 (SNMPv2). An attacker could exploit this vulnerability by sending an SNMPv1 or SNMPv2 GET request to an affected device. A successful exploit could allow the attacker to retrieve sensitive information from the device using the default credential. This attack will only be successful if SNMP is configured, and the attacker can only perform SNMP GET requests; write access using SNMP is not allowed.
A vulnerability in the tenant security implementation of Cisco Nexus Dashboard Orchestrator (NDO) could allow an authenticated, remote attacker to modify or delete tenant templates on an affected system. This vulnerability is due to improper access controls within tenant security. An attacker who is using a valid user account with write privileges and either a Site Manager or Tenant Manager role could exploit this vulnerability. A successful exploit could allow the attacker to modify or delete tenant templates under non-associated tenants, which could disrupt network traffic.
A vulnerability in the file policy feature that is used to inspect encrypted archive files of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass a configured file policy to block an encrypted archive file. This vulnerability exists because of a logic error when a specific class of encrypted archive files is inspected. An attacker could exploit this vulnerability by sending a crafted, encrypted archive file through the affected device. A successful exploit could allow the attacker to send an encrypted archive file, which could contain malware and should have been blocked and dropped at the Cisco FTD device.
A vulnerability in the bootloader of Cisco NX-OS Software could allow an unauthenticated attacker with physical access to an affected device, or an authenticated, local attacker with administrative credentials, to bypass NX-OS image signature verification. This vulnerability is due to insecure bootloader settings. An attacker could exploit this vulnerability by executing a series of bootloader commands. A successful exploit could allow the attacker to bypass NX-OS image signature verification and load unverified software.
A vulnerability in the access control list (ACL) processing on MPLS interfaces in the ingress direction of Cisco IOS XR Software could allow an unauthenticated, remote attacker to bypass a configured ACL. This vulnerability is due to improper assignment of lookup keys to internal interface contexts. An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to access resources behind the affected device that were supposed to be protected by a configured ACL.
A vulnerability in the implementation of the Simple Network Management Protocol (SNMP) IPv4 access control list (ACL) feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to perform SNMP polling of an affected device, even if it is configured to deny SNMP traffic. This vulnerability exists because Cisco IOS Software and Cisco IOS XE Software do not support extended IPv4 ACLs for SNMP, but they do allow administrators to configure extended named IPv4 ACLs that are attached to the SNMP server configuration without a warning message. This can result in no ACL being applied to the SNMP listening process. An attacker could exploit this vulnerability by performing SNMP polling of an affected device. A successful exploit could allow the attacker to perform SNMP operations that should be denied. The attacker has no control of the SNMP ACL configuration and would still need a valid SNMP version 2c (SNMPv2c) community string or SNMP version 3 (SNMPv3) user credentials. SNMP with IPv6 ACL configurations is not affected. For more information, see the section of this advisory.
A vulnerability in the UDP forwarding code of Cisco IOS XR Software could allow an unauthenticated, adjacent attacker to bypass configured management plane protection policies and access the Simple Network Management Plane (SNMP) server of an affected device. This vulnerability is due to incorrect UDP forwarding programming when using SNMP with management plane protection. An attacker could exploit this vulnerability by attempting to perform an SNMP operation using broadcast as the destination address that could be processed by an affected device that is configured with an SNMP server. A successful exploit could allow the attacker to communicate to the device on the configured SNMP ports. Although an unauthenticated attacker could send UDP datagrams to the configured SNMP port, only an authenticated user can retrieve or modify data using SNMP requests.
A vulnerability in the access control list (ACL) processing on Pseudowire interfaces in the ingress direction of Cisco IOS XR Software could allow an unauthenticated, remote attacker to bypass a configured ACL. This vulnerability is due to improper assignment of lookup keys to internal interface contexts. An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to access resources behind the affected device that were supposed to be protected by a configured ACL.
A vulnerability in the access control list (ACL) programming of Cisco IOS Software running on Cisco Industrial Ethernet 4000, 4010, and 5000 Series Switches could allow an unauthenticated, remote attacker to bypass a configured ACL. This vulnerability is due to the incorrect handling of IPv4 ACLs on switched virtual interfaces when an administrator enables and disables Resilient Ethernet Protocol (REP). An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to bypass an ACL on the affected device.
A vulnerability in the restricted security domain implementation of Cisco Application Policy Infrastructure Controller (APIC) could allow an authenticated, remote attacker to modify the behavior of default system policies, such as quality of service (QoS) policies, on an affected system. This vulnerability is due to improper access control when restricted security domains are used to implement multi-tenancy. An attacker with a valid user account associated with a restricted security domain could exploit this vulnerability. A successful exploit could allow the attacker to read, modify, or delete child policies created under default system policies, which are implicitly used by all tenants in the fabric, resulting in disruption of network traffic. Exploitation is not possible for policies under tenants that an attacker has no authorization to access.
A vulnerability in the Live Data server of Cisco Unified Intelligence Center could allow an unauthenticated, local attacker to read and modify data in a repository that belongs to an internal service on an affected device. This vulnerability is due to insufficient access control implementations on cluster configuration CLI requests. An attacker could exploit this vulnerability by sending a cluster configuration CLI request to specific directories on an affected device. A successful exploit could allow the attacker to read and modify data that is handled by an internal service on the affected device.
A vulnerability in the access control list (ACL) programming for port channel subinterfaces of Cisco Nexus 3000 and 9000 Series Switches in standalone NX-OS mode could allow an unauthenticated, remote attacker to send traffic that should be blocked through an affected device. This vulnerability is due to incorrect hardware programming that occurs when configuration changes are made to port channel member ports. An attacker could exploit this vulnerability by attempting to send traffic through an affected device. A successful exploit could allow the attacker to access network resources that should be protected by an ACL that was applied on port channel subinterfaces.
A vulnerability in Cisco Nexus Dashboard could allow an authenticated, remote attacker to learn cluster deployment information on an affected device. This vulnerability is due to improper access controls on a specific API endpoint. An attacker could exploit this vulnerability by sending queries to the API endpoint. A successful exploit could allow an attacker to access metrics and information about devices in the Nexus Dashboard cluster.
A vulnerability in the CLI of Cisco IOS XR Software could allow an authenticated, local attacker to read any file in the file system of the underlying Linux operating system. The attacker must have valid credentials on the affected device. This vulnerability is due to incorrect validation of the arguments that are passed to a specific CLI command. An attacker could exploit this vulnerability by logging in to an affected device with low-privileged credentials and using the affected command. A successful exploit could allow the attacker access files in read-only mode on the Linux file system.
Cisco Application Policy Infrastructure Controller (APIC) devices with software before 1.0(3h) and 1.1 before 1.1(1j) and Nexus 9000 ACI Mode switches with software before 11.0(3h) and 11.1 before 11.1(1j) allow remote authenticated users to bypass intended RBAC restrictions via crafted REST requests, aka Bug ID CSCut12998.
The proxy engine in Cisco Advanced Malware Protection (AMP), when used with Email Security Appliance (ESA) 9.5.0-201, 9.6.0-051, and 9.7.0-125, allows remote attackers to bypass intended content restrictions via a malformed e-mail message containing an encoded file, aka Bug ID CSCux45338.
The API web interface in Cisco Prime Infrastructure before 3.1 and Cisco Evolved Programmable Network Manager before 1.2.4 allows remote authenticated users to bypass intended RBAC restrictions and obtain sensitive information, and consequently gain privileges, via crafted JSON data, aka Bug ID CSCuy12409.
Cisco Prime Infrastructure 2.2(2) does not properly restrict use of IFRAME elements, which makes it easier for remote attackers to conduct clickjacking attacks and unspecified other attacks via a crafted web site, related to a "cross-frame scripting (XFS)" issue, aka Bug ID CSCuw65846, a different vulnerability than CVE-2015-6434.
Cisco Identity Services Engine (ISE) before 2.0 allows remote authenticated users to bypass intended web-resource access restrictions via a direct request, aka Bug ID CSCuu45926.
Cisco IOS 15.2(04)M6 and 15.4(03)S lets physical-interface ACLs supersede tunnel-interface ACLs, which allows remote attackers to bypass intended network-traffic restrictions in opportunistic circumstances by using a tunnel, aka Bug ID CSCur01042.
The web interface in Cisco FireSIGHT Management Center 5.3.1.4 allows remote attackers to delete arbitrary system policies via modified parameters in a POST request, aka Bug ID CSCuu25390.
Cisco Unified Web and E-Mail Interaction Manager 9.0(2) and 11.0(1) improperly performs authorization, which allows remote authenticated users to read or write to stored data via unspecified vectors, aka Bug ID CSCuo89056.
Cisco Unified Web and E-Mail Interaction Manager 9.0(2) improperly performs authorization, which allows remote authenticated users to remove default messaging-queue system folders via unspecified vectors, aka Bug ID CSCuo89046.
Cisco TelePresence TC before 7.3.4 on Integrator C devices allows remote attackers to bypass authentication via vectors involving multiple request parameters, aka Bug ID CSCuv00604.
A vulnerability in the payload inspection for Ethernet Industrial Protocol (ENIP) traffic for Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass configured rules for ENIP traffic. This vulnerability is due to incomplete processing during deep packet inspection for ENIP packets. An attacker could exploit this vulnerability by sending a crafted ENIP packet to the targeted interface. A successful exploit could allow the attacker to bypass configured access control and intrusion policies that should trigger and drop for the ENIP packet.
A vulnerability in the Cisco IOS XE SD-WAN Software CLI could allow an authenticated, local attacker to elevate privileges and execute arbitrary code on the underlying operating system as the root user. An attacker must be authenticated on an affected device as a PRIV15 user. This vulnerability is due to insufficient file system protection and the presence of a sensitive file in the bootflash directory on an affected device. An attacker could exploit this vulnerability by overwriting an installer file stored in the bootflash directory with arbitrary commands that can be executed with root-level privileges. A successful exploit could allow the attacker to read and write changes to the configuration database on the affected device.
Multiple vulnerabilities in the payload inspection for Ethernet Industrial Protocol (ENIP) traffic for Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass configured rules for ENIP traffic. These vulnerabilities are due to incomplete processing during deep packet inspection for ENIP packets. An attacker could exploit these vulnerabilities by sending a crafted ENIP packet to the targeted interface. A successful exploit could allow the attacker to bypass configured access control and intrusion policies that should be activated for the ENIP packet.
Multiple vulnerabilities in the web-based management interface of the Cisco Catalyst Passive Optical Network (PON) Series Switches Optical Network Terminal (ONT) could allow an unauthenticated, remote attacker to perform the following actions: Log in with a default credential if the Telnet protocol is enabled Perform command injection Modify the configuration For more information about these vulnerabilities, see the Details section of this advisory.
The failover ipsec implementation in Cisco Adaptive Security Appliance (ASA) Software 9.1 before 9.1(6), 9.2 before 9.2(3.3), and 9.3 before 9.3(3) does not properly validate failover communication messages, which allows remote attackers to reconfigure an ASA device, and consequently obtain administrative control, by sending crafted UDP packets over the local network to the failover interface, aka Bug ID CSCur21069.