An issue was discovered in Mitsubishi Electric Automation MELSEC-Q series Ethernet interface modules QJ71E71-100, all versions, QJ71E71-B5, all versions, and QJ71E71-B2, all versions. Weakly encrypted passwords are transmitted to a MELSEC-Q PLC.
The provided HCL Launch Container images contain non-unique HTTPS certificates and a database encryption key. The fix provides directions and tools to replace the non-unique keys and certificates. This does not affect the standard installer packages.
TeeKai Tracking Online 1.0 uses weak encryption of web usage statistics in data/userlog/log.txt, which allows remote attackers to identify IP's visiting the site by dividing each octet by the MD5 hash of '20'.
A flaw was found in 3scale’s APIcast gateway that enabled the TLS 1.0 protocol. An attacker could target traffic using this weaker protocol and break its encryption, gaining access to unauthorized information. Version shipped in Red Hat 3scale API Management Platform is vulnerable to this issue.
Comba AP2600-I devices through A02,0202N00PD2 are prone to password disclosure via an insecure authentication mechanism. The HTML source code of the login page contains values that allow obtaining the username and password. The username are password values are a double md5 of the plaintext real value, i.e., md5(md5(value)).
IBM Cloud CLI 0.6.0 through 0.16.1 windows installers are signed using SHA1 certificate. An attacker might be able to exploit the weak algorithm to generate a installer with malicious software inside. IBM X-Force ID: 162773.
TP-Link router TL-WR940N V6 3.19.1 Build 180119 uses a deprecated MD5 algorithm to hash the admin password used for basic authentication.
IBM Security Secret Server 10.7 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 170045.
The kube-rbac-proxy container before version 0.4.1 as used in Red Hat OpenShift Container Platform does not honor TLS configurations, allowing for use of insecure ciphers and TLS 1.0. An attacker could target traffic sent over a TLS connection with a weak configuration and potentially break the encryption.
IBM Security Directory Server 6.4.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 165813.
IBM Cloud Orchestrator 2.4 through 2.4.0.5 and 2.5 through 2.5.0.9 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 162260.
An issue was discovered in iNextrix ASTPP before 4.0.1. web_interface/astpp/application/config/config.php does not have strong random keys, as demonstrated by use of the 8YSDaBtDHAB3EQkxPAyTz2I5DttzA9uR private key and the r)fddEw232f encryption key.
TVS Motor Company Limited TVS Connect Android v4.6.0 and IOS v5.0.0 was discovered to insecurely handle the RSA key pair, allowing attackers to possibly access sensitive information via decryption.
IBM Spectrum Scale 5.1.5.0 through 5.1.5.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 239080.
A use of a broken or risky cryptographic algorithm [CWE-327] in Fortinet FortiSIEM before 6.7.1 allows a remote unauthenticated attacker to perform brute force attacks on GUI endpoints via taking advantage of outdated hashing methods.
IBM WebSphere Application Server 8.5 and 9.0 traditional container uses weaker than expected cryptographic keys that could allow an attacker to decrypt sensitive information. This affects only the containerized version of WebSphere Application Server traditional. IBM X-Force ID: 241045.
Brocade SANnav before Brocade SANnav 2.2.2 supports key exchange algorithms, which are considered weak on ports 24, 6514, 18023, 19094, and 19095.
IBM Aspera Console 3.4.0 through 3.4.4 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
The client in EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.9 and 4.1.x before 4.1.5 places the weakest algorithms first in a signature-algorithm list transmitted to a server, which makes it easier for remote attackers to defeat cryptographic protection mechanisms by leveraging server behavior in which the first algorithm is used.
The use of a broken or risky cryptographic algorithm in Philips Vue PACS versions 12.2.x.x and prior is an unnecessary risk that may result in the exposure of sensitive information.
Dell PowerScale OneFS versions 8.2.x through 9.7.0.2 contains a use of a broken or risky cryptographic algorithm vulnerability. A remote unauthenticated attacker could potentially exploit this vulnerability, leading to information disclosure.
IBM QRadar SIEM 7.3 and 7.4 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 201778.
IBM Security SOAR uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
Dell PowerProtect DD, versions prior to DDOS 8.3.0.0, 7.10.1.50, and 7.13.1.10 contains a use of a Cryptographic Primitive with a Risky Implementation vulnerability. A remote attacker could potentially exploit this vulnerability, leading to Information tampering.
IBM Tivoli Netcool/Impact 7.1.0.20 and 7.1.0.21 uses an insecure SSH server configuration which enables weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 203556.
IBM Cloud Pak for Security (CP4S) 1.7.0.0, 1.7.1.0, 1.7.2.0, and 1.8.0.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 207320.
IBM Sterling Secure Proxy 6.0.1, 6.0.2, 2.4.3.2, and 3.4.3.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-ForceID: 201100.
IBM Spectrum Protect Plus 10.1.0 through 10.1.7 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 200258.
IBM Sterling Secure Proxy 6.0.1, 6.0.2, 2.4.3.2, and 3.4.3.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 201095.
"TLS-RSA cipher suites are not disabled in BigFix Compliance up to v2.0.5. If TLS 2.0 and secure ciphers are not enabled then an attacker can passively record traffic and later decrypt it."
Certain switch models from PLANET Technology only support obsolete algorithms for authentication protocol and encryption protocol in the SNMPv3 service, allowing attackers to obtain plaintext SNMPv3 credentials potentially.
IBM Counter Fraud Management for Safer Payments 6.1.0.00 through 6.1.1.02, 6.2.0.00 through 6.2.2.02, 6.3.0.00 through 6.3.1.02, 6.4.0.00 through 6.4.2.01, and 6.5.0.00 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 249192.
IBM Spectrum Control 5.4 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 233982.
An issue was discovered in AudioCodes Mediant Session Border Controller (SBC) before 7.40A.501.841. Due to the use of weak password obfuscation/encryption, an attacker with access to configuration exports (INI) is able to decrypt the passwords.
The Progress MOVEit Automation configuration export function prior to 2024.0.0 uses a cryptographic method with insufficient bit length.
IBM Security QRadar 3.12 EDR uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt sensitive credential information.
IBM Cognos Controller 11.0.0 and 11.0.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
IBM Sterling Connect:Direct Web Services 6.0, 6.1, 6.2, and 6.3 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
IBM Datacap Navigator 9.1.5, 9.1.6, 9.1.7, 9.1.8, and 9.1.9 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 295970.
IBM Maximo Application Suite - Manage Component 8.10, 8.11, and 9.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information using man in the middle techniques.
The encrypt() function of Ninja Core v7.0.0 was discovered to use a weak cryptographic algorithm, leading to a possible leakage of sensitive information.
IBM SPSS Statistics 26.0, 27.0.1, 28.0.1, and 29.0.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
Dell InsightIQ, Verion 5.0.0, contains a use of a broken or risky cryptographic algorithm vulnerability. An unauthenticated remote attacker could potentially exploit this vulnerability, leading to information disclosure.
IBM MQ Operator 2.0.0 LTS, 2.0.18 LTS, 3.0.0 CD, 3.0.1 CD, 2.4.0 through 2.4.7, 2.3.0 through 2.3.3, 2.2.0 through 2.2.2, and 2.3.0 through 2.3.3 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 283905.
IBM MQ Container 3.0.0, 3.0.1, 3.1.0 through 3.1.3 CD, 2.0.0 LTS through 2.0.22 LTS and 2.4.0 through 2.4.8, 2.3.0 through 2.3.3, 2.2.0 through 2.2.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
Dell PowerScale OneFS, versions 8.2.2.x through 9.5.0.x contains a use of a broken cryptographic algorithm vulnerability. A remote unauthenticated attacker could potentially exploit this vulnerability, leading to information disclosure.
IBM Storage Defender - Resiliency Service 2.0.0 through 2.0.12 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
IBM DevOps Velocity 5.0.0 and IBM UrbanCode Velocity 4.0.0 through 4.0. 25 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
IBM Semeru Runtime 8.0.302.0 through 8.0.392.0, 11.0.12.0 through 11.0.21.0, 17.0.1.0 - 17.0.9.0, and 21.0.1.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 281222.
beego is an open-source web framework for the Go programming language. Versions of beego prior to 2.3.4 use MD5 as a hashing algorithm. MD5 is no longer considered secure against well-funded opponents due to its vulnerability to collision attacks. Version 2.3.4 replaces MD5 with SHA256.