A vulnerability, which was classified as critical, has been found in TP-Link VN020 F3v(T) TT_V6.2.1021. Affected by this issue is some unknown functionality of the component DHCP DISCOVER Packet Parser. The manipulation of the argument hostname leads to stack-based buffer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used.
A memory corruption vulnerability exists in the web interface functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted HTTP POST request can lead to denial of service of the device's web interface. An attacker can send an unauthenticated HTTP POST request to trigger this vulnerability.
A buffer overflow vulnerability was discovered in TP-Link TL-WR841ND V11 via the 'ip' parameter at /userRpm/WanStaticIpV6CfgRpm.htm. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted packet.
A buffer overflow vulnerability was discovered in TP-Link TL-WR841ND V11, triggered by the dnsserver1 and dnsserver2 parameters at /userRpm/WanSlaacCfgRpm.htm. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted packet.
A stack overflow in the function DM_ In fillobjbystr() of TP-Link Archer C50&A5(US)_V5_200407 allows attackers to cause a Denial of Service (DoS) via a crafted HTTP request.
An exploitable denial-of-service vulnerability exists in the URI-parsing functionality of the TP-Link TL-R600VPN HTTP server. A specially crafted URL can cause the server to stop responding to requests, resulting in downtime for the management portal. An attacker can send either an unauthenticated or authenticated web request to trigger this vulnerability.
TP Link MR200 V4 Firmware version 210201 was discovered to contain a null-pointer-dereference in the web administration panel on /cgi/login via the sign, Action or LoginStatus query parameters which could lead to a denial of service by a local or remote unauthenticated attacker.
A vulnerability has been found in TP-Link TL-WR841N V11. The vulnerability exists in the /userRpm/Wan6to4TunnelCfgRpm.htm file due to missing input parameter validation, which may lead to the buffer overflow to cause a crash of the web service and result in a denial-of-service (DoS) condition. The attack may be launched remotely. This vulnerability only affects products that are no longer supported by the maintainer.
A vulnerability has been found in TP-Link TL-WR841N V11. The vulnerability exists in the /userRpm/WlanNetworkRpm_APC.htm file due to missing input parameter validation, which may lead to the buffer overflow to cause a crash of the web service and result in a denial-of-service (DoS) condition. The attack may be launched remotely. This vulnerability only affects products that are no longer supported by the maintainer.
A vulnerability has been found in TP-Link TL-WR841N V11. The vulnerability exists in the /userRpm/WzdWlanSiteSurveyRpm_AP.htm file due to missing input parameter validation, which may lead to the buffer overflow to cause a crash of the web service and result in a denial-of-service (DoS) condition. The attack may be launched remotely. This vulnerability only affects products that are no longer supported by the maintainer.
A vulnerability has been found in TP-Link TL-WR841N V11. The vulnerability exists in the /userRpm/WlanNetworkRpm_AP.htm file due to missing input parameter validation, which may lead to the buffer overflow to cause a crash of the web service and result in a denial-of-service (DoS) condition. The attack may be launched remotely. This vulnerability only affects products that are no longer supported by the maintainer.
A vulnerability has been found in TP-Link TL-WR841N V11. The vulnerability exists in the /userRpm/WlanNetworkRpm.htm file due to missing input parameter validation, which may lead to the buffer overflow to cause a crash of the web service and result in a denial-of-service (DoS) condition. The attack may be launched remotely. This vulnerability only affects products that are no longer supported by the maintainer.
Buffer Overflow in TP-Link WR2041 v1 firmware for the TL-WR2041+ router allows remote attackers to cause a Denial-of-Service (DoS) by sending an HTTP request with a very long "ssid" parameter to the "/userRpm/popupSiteSurveyRpm.html" webpage, which crashes the router.
TP-Link TL-WR940N V2, TP-Link TL-WR941ND V5 and TP-Link TL-WR841N V8 were discovered to contain a buffer overflow via the component /userRpm/AccessCtrlAccessRulesRpm. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted GET request.
TP-Link TL-WR940N V4, TL-WR841N V8/V10, TL-WR740N V1/V2, TL-WR940N V2/V3, and TL-WR941ND V5/V6 were discovered to contain a buffer overflow in the component /userRpm/AccessCtrlTimeSchedRpm. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted GET request.
TP-Link TL-WR940N V4, TL-WR841N V8/V10, TL-WR940N V2/V3 and TL-WR941ND V5/V6 were discovered to contain a buffer overflow in the component /userRpm/QoSRuleListRpm. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted GET request.
TP-LINK TL-WR1043ND V1_120405 devices contain an unspecified denial of service vulnerability.
TP-Link Archer C50 V3 devices before Build 200318 Rel. 62209 allows remote attackers to cause a denial of service via a crafted HTTP Header containing an unexpected Referer field.
A misconfiguration in HTTP/1.0 and HTTP/1.1 of the web interface in TP-Link AX10v1 before V1_211117 allows a remote unauthenticated attacker to send a specially crafted HTTP request and receive a misconfigured HTTP/0.9 response, potentially leading into a cache poisoning attack.
An infinite loop in the function httpRpmPass of TP-Link TL-WR741N/TL-WR742N V1/V2/V3_130415 allows attackers to cause a Denial of Service (DoS) via a crafted packet.
TP-LINK Archer C50v2 Archer C50(US)_V2_160801, TP-LINK Archer C20v1 Archer_C20_V1_150707, and TP-LINK Archer C2v1 Archer_C2_US__V1_170228 were discovered to contain a buffer overflow which may lead to a Denial of Service (DoS) when parsing crafted data.
A denial of service vulnerability exists in the TDDP functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of network requests can lead to reset to factory settings. An attacker can send a sequence of unauthenticated packets to trigger this vulnerability.
TP-LINK TL-WR840N(ES)_V6.20_180709 was discovered to contain an integer overflow via the function dm_checkString. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted HTTP request.
Insecure Permissions vulnerability in Connectivity Standards Alliance Matter Official SDK v.1.1.0.0 , Nanoleaf Light strip v.3.5.10, Govee LED Strip v.3.00.42, switchBot Hub2 v.1.0-0.8, Phillips hue hub v.1.59.1959097030, and yeelight smart lamp v.1.12.69 allows a remote attacker to cause a denial of service via a crafted script to the KeySetRemove function.
An issue in the component /userRpm/NetworkCfgRpm of TP-Link TL-WR1041N V2 allows attackers to cause a Denial of Service (DoS) via a crafted GET request.
An HTTP request smuggling attack in TP-Link AX10v1 before v1_211117 allows a remote unauthenticated attacker to DoS the web application via sending a specific HTTP packet.
TP-Link NC200 through 2.1.8_Build_171109, NC210 through 1.0.9_Build_171214, NC220 through 1.3.0_Build_180105, NC230 through 1.3.0_Build_171205, NC250 through 1.3.0_Build_171205, NC260 through 1.5.1_Build_190805, and NC450 through 1.5.0_Build_181022 devices allow a remote NULL Pointer Dereference.
The Web Management of TP-Link TP-SG105E V4 1.0.0 Build 20181120 devices allows an unauthenticated attacker to reboot the device via a reboot.cgi request.
A denial-of-service attack in WPA2, and WPA3-SAE authentication methods in TP-Link AX10v1 before V1_211014, allows a remote unauthenticated attacker to disconnect an already connected wireless client via sending with a wireless adapter specific spoofed authentication frames
In TP-Link TL-XDR3230 < 1.0.12, TL-XDR1850 < 1.0.9, TL-XDR1860 < 1.0.14, TL-XDR3250 < 1.0.2, TL-XDR6060 Turbo < 1.1.8, TL-XDR5430 < 1.0.11, and possibly others, when IPv6 is used, a routing loop can occur that generates excessive network traffic between an affected device and its upstream ISP's router. This occurs when a link prefix route points to a point-to-point link, a destination IPv6 address belongs to the prefix and is not a local IPv6 address, and a router advertisement is received with at least one global unique IPv6 prefix for which the on-link flag is set.
TP-Link EC-70 devices through 2.3.4 Build 20220902 rel.69498 have a Buffer Overflow.
An exploitable remote code execution vulnerability exists in the ping and tracert functionality of the TP-Link TL-R600VPN HWv3 FRNv1.3.0 and HWv2 FRNv1.2.3 http server. A specially crafted IP address can cause a stack overflow, resulting in remote code execution. An attacker can send a single authenticated HTTP request to trigger this vulnerability.
A vulnerability, which was classified as critical, was found in TP-Link VN020 F3v(T) TT_V6.2.1021. This affects an unknown part of the component FTP USER Command Handler. The manipulation leads to memory corruption. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used.
TP-Link Omada ER605 DHCPv6 Client Options Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of TP-Link Omada ER605 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of DHCP options. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-22420.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `band` parameter at offset `0x0045aad8` of the `httpd_portal` binary shipped with v5.1.0 Build 20220926 of the EAP225.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `action` parameter at offset `0x422448` of the `httpd` binary shipped with v5.0.4 Build 20220216 of the EAP115.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `profile` parameter at offset `0x4224b0` of the `httpd` binary shipped with v5.0.4 Build 20220216 of the EAP115.
Stack-based buffer overflow in the httpd server of TP-Link WR1043nd (Firmware Version 3) allows remote attackers to execute arbitrary code via a malicious MediaServer request to /userRpm/MediaServerFoldersCfgRpm.htm.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `ssid` parameter at offset `0x42247c` of the `httpd` binary shipped with v5.0.4 Build 20220216 of the EAP115.
A stack-based buffer overflow vulnerability exists in the web interface Radio Scheduling functionality of Tp-Link AC1350 Wireless MU-MIMO Gigabit Access Point (EAP225 V3) v5.1.0 Build 20220926. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.This vulnerability refers specifically to the overflow that occurs via the `band` parameter at offset `0x422420` of the `httpd` binary shipped with v5.0.4 Build 20220216 of the EAP115.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function chkResetVeriRegister.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin and TL-WDR7660 2.0.30 was discovered to contain a stack overflow via the function bindRequestHandle.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function chkRegVeriRegister.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function modifyAccPwdRegister.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function getRegVeriRegister.
Stack-based buffer overflow in TP-Link TL-WA850RE Wi-Fi Range Extender with hardware version 5 allows remote authenticated users to cause a denial of service (outage) via a long type parameter to /data/syslog.filter.json.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function uninstallPluginReqHandle.
TP-LINK device TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin and TL-WDR7660 2.0.30 were discovered to contain a stack overflow via the function deviceInfoRegister.
TP-Link TL-WDR7660 2.0.30 has a stack overflow vulnerability via the function deviceInfoJsonToBincauses.
TP-Link device TL-WDR7660 2.0.30 and TL-WR886N 2.0.12 has a stack overflow vulnerability via the function upgradeInfoJsonToBin.