IBM UrbanCode Deploy (UCD) 7.0.5, 7.1.0, 7.1.1, and 7.1.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 218859.
IBM Sterling B2B Integrator Standard Edition 5.2.0.0 through 6.0.3.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 191814.
IBM Data Risk Manager (iDNA) 2.0.6 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 184925.
IBM Security Guardium Insights 2.0.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 184812.
IBM Security Guardium Insights 2.0.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 184819.
IBM Security Guardium Big Data Intelligence 1.0 (SonarG) uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 175560.
IBM Planning Analytics Local 2.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 179001.
IBM API Connect V2018.4.1.0 through 2018.4.1.11 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 181324.
IBM Security Guardium Insights 2.0.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 174405.
IBM Spectrum Scale 5.0.0.0 through 5.0.4.4 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 178424.
IBM Security Guardium Insights 2.0.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 174683.
IBM Spectrum Scale 5.0.0.0 through 5.0.4.4 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 179158.
An issue was discovered in certain Xerox WorkCentre products. They do not properly encrypt passwords. This affects 3655, 3655i, 58XX, 58XXi 59XX, 59XXi, 6655, 6655i, 72XX, 72XXi 78XX, 78XXi, 7970, 7970i, EC7836, and EC7856 devices.
An issue was discovered on CDATA 72408A, 9008A, 9016A, 92408A, 92416A, 9288, 97016, 97024P, 97028P, 97042P, 97084P, 97168P, FD1002S, FD1104, FD1104B, FD1104S, FD1104SN, FD1108S, FD1204S-R2, FD1204SN, FD1204SN-R2, FD1208S-R2, FD1216S-R1, FD1608GS, FD1608SN, FD1616GS, FD1616SN, and FD8000 devices. A custom encryption algorithm is used to store encrypted passwords. This algorithm will XOR the password with the hardcoded *j7a(L#yZ98sSd5HfSgGjMj8;Ss;d)(*&^#@$a2s0i3g value.
A vulnerability was found in NFine Rapid Development Platform 20230511. It has been classified as problematic. Affected is an unknown function of the file /Login/CheckLogin. The manipulation leads to use of weak hash. It is possible to launch the attack remotely. The complexity of an attack is rather high. The exploitability is told to be difficult. The exploit has been disclosed to the public and may be used. VDB-229974 is the identifier assigned to this vulnerability. NOTE: The vendor was contacted early about this disclosure but did not respond in any way.
An insufficiently protected credentials issue was discovered in Intland codeBeamer ALM 10.x through 10.1.SP4. The remember-me cookie (CB_LOGIN) issued by the application contains the encrypted user's credentials. However, due to a bug in the application code, those credentials are encrypted using a NULL encryption key.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). Due to the usage of an insecure random number generation function and a deprecated cryptographic function, an attacker could extract the key that is used when communicating with an affected device on port 8080/tcp.
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain an Use of a Broken or Risky Cryptographic Algorithm vulnerability in the DD boost. An unauthenticated attacker with remote access could potentially exploit this vulnerability, leading to Information exposure.
Oclean Mobile Application 2.1.2 communicates with an external website using HTTP so it is possible to eavesdrop the network traffic. The content of HTTP payload is encrypted using XOR with a hardcoded key, which allows for the possibility to decode the traffic.
Broadcom RAID Controller web interface is vulnerable has an insecure default TLS configuration that supports obsolete SHA1-based ciphersuites
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). Due to the usage of an outdated cipher mode on port 10005/tcp, an attacker could extract the encryption key from a captured communication with the device.
Broadcom RAID Controller web interface is vulnerable has an insecure default TLS configuration that support obsolete and vulnerable TLS protocols
Sensitive information disclosure and weak encryption in Pyrescom Termod4 time management devices before 10.04k allows remote attackers to read a session-file and obtain plain-text user credentials.
Rocket Software UniData versions prior to 8.2.4 build 3003 and UniVerse versions prior to 11.3.5 build 1001 or 12.2.1 build 2002 use weak encryption for packet-level security and passwords transferred on the wire.
In Moxa PT-7528 series firmware, Version 4.0 or lower, and PT-7828 series firmware, Version 3.9 or lower, the affected products use a weak cryptographic algorithm, which may allow confidential information to be disclosed.
A Broken or Risky Cryptographic Algorithm exists in Max Mazurov Maddy before 0.5.2, which is an unnecessary risk that may result in the exposure of sensitive information.
IBM DevOps Velocity 5.0.0 and IBM UrbanCode Velocity 4.0.0 through 4.0. 25 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
IBM Semeru Runtime 8.0.302.0 through 8.0.392.0, 11.0.12.0 through 11.0.21.0, 17.0.1.0 - 17.0.9.0, and 21.0.1.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 281222.
IBM Cognos Controller 10.4.1, 10.4.2, and 11.0.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 264939.
CloudLink 7.1.2 and all prior versions contain a broken or risky cryptographic algorithm vulnerability. An unauthenticated remote attacker could potentially exploit this vulnerability leading to some information disclosure.
An Observable Timing Discrepancy, Covert Timing Channel vulnerability in Silabs GSDK on ARM potentially allows Padding Oracle Crypto Attack on CBC PKCS7.This issue affects GSDK: through 4.4.0.
A cryptography vulnerability in Kentico Xperience allows attackers to potentially manipulate URL hash values through existing hashing mechanisms. The hotfix introduces an additional security layer to prevent hash value reuse and potential exploitation.
The use of a broken or risky cryptographic algorithm in Philips Vue PACS versions 12.2.x.x and prior is an unnecessary risk that may result in the exposure of sensitive information.
IBM Security Guardium Insights 2.0.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 184800.
IBM Data Risk Manager (iDNA) 2.0.6 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt sensitive information. IBM X-Force ID: 184927.
IBM QRadar SIEM 7.5.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 248147.
IBM Jazz Team Server products use weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 192422.
IBM Curam Social Program Management 7.0.9 and 7.0.10 uses MD5 algorithm for hashing token in a single instance which less safe than default SHA-256 cryptographic algorithm used throughout the Cúram application. IBM X-Force ID: 189156.
Dell PowerScale OneFS, versions prior to 9.10.1.3 and versions 9.11.0.0 through 9.12.0.0, contains a use of a broken or risky cryptographic algorithm vulnerability. An unauthenticated attacker with remote access could potentially exploit this vulnerability, leading to Information disclosure.
IBM Spectrum Scale 5.0.0.0 through 5.0.4.4 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 178423.
IBM Security Guardium 10.5, 10.6, and 11.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 174803.
In the IPv6 implementation in the Linux kernel before 5.13.3, net/ipv6/output_core.c has an information leak because of certain use of a hash table which, although big, doesn't properly consider that IPv6-based attackers can typically choose among many IPv6 source addresses.
In Mbed TLS before 2.28.0 and 3.x before 3.1.0, psa_cipher_generate_iv and psa_cipher_encrypt allow policy bypass or oracle-based decryption when the output buffer is at memory locations accessible to an untrusted application.
IBM Spectrum Protect Plus 10.1.0 through 10.1.7 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 200258.
In Mbed TLS before 3.1.0, psa_aead_generate_nonce allows policy bypass or oracle-based decryption when the output buffer is at memory locations accessible to an untrusted application.
IBM CICS TX Advanced 10.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 260770.
libxcrypt in SUSE openSUSE 11.0 uses the DES algorithm when the configuration specifies the MD5 algorithm, which makes it easier for attackers to conduct brute-force attacks against hashed passwords.
mySCADA myPRO Versions 8.20.0 and prior stores passwords using MD5, which may allow an attacker to crack the previously retrieved password hashes.
TLS-RSA cipher suites are not disabled in HCL BigFix Inventory up to v10.0.2. If TLS 2.0 and secure ciphers are not enabled then an attacker can passively record traffic and later decrypt it.
Python-RSA before 4.1 ignores leading '\0' bytes during decryption of ciphertext. This could conceivably have a security-relevant impact, e.g., by helping an attacker to infer that an application uses Python-RSA, or if the length of accepted ciphertext affects application behavior (such as by causing excessive memory allocation).